Skip to main content
Log in

Synthesis, Crystal Structures and their Utilities in Tishchenko Reaction of N,O-Bidentate Aluminum Compounds

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Deprotonolysis of the N,O-bidentate pyridyl functionalized alkoxy ligands, 1,1-dimethyl-2-(pyridin-2-yl)ethanol (L 1H), 1-phenyl-2-(pyridin-2-yl)ethanol (L 2H) and 1,1-diphenyl-2-(pyridin-2-yl)ethanol (L 3H), with 1 equiv of AlMe3 gave the corresponding dimeric metal-monoalkyl compounds [L 1AlMe2]2 (1), [L 2AlMe2]2 (2), and [L 3AlMe2]2 (3), respectively. Compounds 13 were characterized by 1H and 13C NMR spectroscopy analysis, and the molecular structures of 1 and 2 were further confirmed by X-ray diffraction analysis. In the presence of iPrOH, aluminum compounds 12 exhibited excellent catalytic activity for the solvent-free Tishchenko reaction under mild conditions. In addition, the catalyst 3 can be easily isolated and recycled three times without a significant decrease in activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. B. M. Trost (1991). Science 254, 1471.

    Article  CAS  Google Scholar 

  2. B. M. Trost (1995). Angew. Chem. 107, 285.

    Article  Google Scholar 

  3. B. M. Trost (1995). Angew. Chem. Int. Ed. Engl. 34, 259.

    Article  CAS  Google Scholar 

  4. R. A. Sheldon (2008). Chem. Commun. 29, 3352.

    Article  Google Scholar 

  5. L. Claisen (1887). Ber. 20, 646.

    Article  Google Scholar 

  6. W. Tischtschenko (1906). J. Russ. Phys. Chem. 38, 355.

    Google Scholar 

  7. M. O. Simon and S. Darses (2010). Adv. Synth. Catal. 352, 305.

    Article  CAS  Google Scholar 

  8. M. R. Crimmin, A. G. M. Barrett, M. S. Hill, and P. A. Procopiou (2007). Org. Lett. 9, 331.

    Article  CAS  Google Scholar 

  9. L. Cronin, F. Manoni, C. J. O’Connor, and S. J. Connon (2010). Angew. Chem. Int. Ed. 49, 3045.

    Article  CAS  Google Scholar 

  10. S. P. Curran and S. J. Connon (2012). Angew. Chem. Int. Ed. 51, 10866.

    Article  CAS  Google Scholar 

  11. T. Seki, T. Nakajo, and M. Onaka (2006). Chem. Lett. 35, 824.

    Article  CAS  Google Scholar 

  12. A. Zuyls, P. W. Roesky, G. B. Deacon, K. Konstas, and P. C. Junk (2008). Eur. J. Org. Chem. 2008, 693.

    Article  Google Scholar 

  13. S. Onozawa, T. Sakakura, M. Tanaka, and M. Shiro (1996). Tetrahedron 52, 4291.

    Article  CAS  Google Scholar 

  14. T. Andrea, E. Barnea, and M. S. Eisen (2008). J. Am. Chem. Soc. 130, 2454.

    Article  CAS  Google Scholar 

  15. W. I. Dzik and L. J. Gooβen (2011). Angew. Chem. Int. Ed. 50, 11047.

    Article  CAS  Google Scholar 

  16. C. Tejel, M. A. Ciriano, and V. Passarelli (2011). Chem. Eur. J. 17, 91.

    Article  CAS  Google Scholar 

  17. K. I. Morita, Y. Nishiyama, and Y. Ishii (1993). Organometallics 12, 3748.

    Article  CAS  Google Scholar 

  18. T. Ito, H. Horino, Y. Koshiro, and A. Yamamoto (1982). Bull. Chem. Soc. Jpn. 55, 504.

    Article  CAS  Google Scholar 

  19. M. Yamashita and T. Ohishi (1993). Appl. Organomet. Chem. 7, 357.

    Article  CAS  Google Scholar 

  20. Y. Hoshimoto, M. Ohashi, and S. Ogoshi (2011). J. Am. Chem. Soc. 133, 4668.

    Article  CAS  Google Scholar 

  21. S. Ogoshi, Y. Hoshimoto, and M. Ohashi (2010). Chem. Commun. 46, 3354.

    Article  CAS  Google Scholar 

  22. J. Li, J. C. Shi, H. F. Han, Z. Q. Guo, H. B. Tong, X. H. Wei, D. S. Liu, and M. F. Lappert (2013). Organometallics 32, 3721.

    Article  CAS  Google Scholar 

  23. D. Ulrich and H. Jankowski (1988). Chem. Tech. 40, 393.

    CAS  Google Scholar 

  24. W. C. Child and H. Adkins (1925). J. Am. Chem. Sco. 47, 798.

    Article  CAS  Google Scholar 

  25. T. Saegusa and T. Ueshima (1968). J. Org. Chem. 33, 3310.

    Article  CAS  Google Scholar 

  26. T. Seki, K. Akutsu, and H. Hattori (2001). Chem. Commun. 11, 1000.

    Article  Google Scholar 

  27. T. Seki and M. Onaka (2005). Chem. Lett. 34, 262.

    Article  CAS  Google Scholar 

  28. T. Seki and M. Onaka (2006). J. Phys. Chem. B. 110, 1240.

    Article  CAS  Google Scholar 

  29. Y. Hon, C. Chang, and Y. Wong (2004). Tetrahedron Lett. 45, 3313.

    Article  CAS  Google Scholar 

  30. J. A. Francis, S. G. Bott, and A. R. Barron (2000). J. Organomet. Chem. 597, 29.

    Article  CAS  Google Scholar 

  31. McMahon C.N., Francis J.A., Bott S.G., and Barron A. R. (1999). J. Chem. Soc., Dalton Trans. 67.

  32. J. A. Francis, S. G. Bott, and A. R. Barron (1999). Polyhedron 18, 2211.

    Article  CAS  Google Scholar 

  33. Francis J. A., Bott S. G., and Barron A. R. (1998). J. Chem. Soc. Dalton Trans. 3305.

  34. J. A. Francis, C. N. McMahon, S. G. Bott, and A. R. Barron (1999). Organometallics 18, 4399.

    Article  CAS  Google Scholar 

  35. M. L. Sierra, V. S. J. de Mel, and J. P. Oliver (1989). Organometallics 8, 2486.

    Article  CAS  Google Scholar 

  36. I. Yamaguchi, T. Iijima, and T. Yamamoto (2002). J. Organometal. Chem. 654, 229.

    Article  CAS  Google Scholar 

  37. Robson D. A., Rees L. H., Mountford P., and Schröder M. (2000). Chem. Commun. 1269.

  38. D. A. Robson, S. Y. Bylikin, M. Cantuel, N. A. H. Male, L. H. Rees, P. Mountford, and M. Schröder (2001). J. Chem. Soc., Dalton Trans. 2, 157.

    Article  Google Scholar 

  39. W. H. Sun, M. Shen, W. J. Zhang, W. Huang, S. F. Liu, and C. Redshaw (2011). Dalton Trans. 40, 2645.

    Article  CAS  Google Scholar 

  40. T. Ooi, K. Ohmatsu, K. Sasaki, T. Miura, and K. Maruoka (2003). Tetrahedron Lett. 44, 3191.

    Article  CAS  Google Scholar 

  41. B. Koning, J. Buter, R. Hulst, R. Stroetinga, and R. M. Kellogg (2000). Eur. J. Org. Chem. 15, 2735.

    Article  Google Scholar 

  42. G. M. Sheldrick SADABS Correction Software (University of Göttingen, Germany, 1996).

    Google Scholar 

  43. G. M. Sheldrick SHELX97, Program for Crystal Structure Refinement (University of Göttingen, Germany, 1997).

    Google Scholar 

  44. SHELXTL Program for Crystal Structure Refinement (Bruker Analytical X-ray Instruments Inc, Madison, 1998).

    Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (Nos. 21272142, 51174275) and the Natural Science Foundation of Shanxi Province (Nos. 2011021011-1, 2008011021) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Hong Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, HF., Zhang, SF., Guo, ZQ. et al. Synthesis, Crystal Structures and their Utilities in Tishchenko Reaction of N,O-Bidentate Aluminum Compounds. J Clust Sci 26, 1971–1982 (2015). https://doi.org/10.1007/s10876-015-0890-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0890-x

Keywords

Navigation