Skip to main content
Log in

Properties of Au/ZnO Nanocomposite Prepared by Laser Irradiation of the Mixture of Individual Colloids

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The Au/ZnO nanocomposite formation under laser irradiation of a mixture of the Au and ZnO colloidal suspensions are experimentally investigated. Au and ZnO nanoparticles are obtained by laser ablation of the corresponding metals in water. The changes in optical spectrum and morphology of the Au/ZnO nanocomposite are studied as a function of volumetric ratio of Au and ZnO colloidal suspensions. It became clear by X-ray diffraction pattern that the samples had the polycrystalline structure of Au. The behavior observed by images of transmission electron microscope shows that soldering of Au and ZnO nanoparticles include their adhesion. The plasmon peak in Au/ZnO nanocomposite was red-shifted and broadened in comparison with pure Au nanoparticles. The band gap energy for Au/ZnO nanocomposites is calculated to be 3.15–3.27 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Shan, M. Zhong, S. Wang, Y. Li, and Y. Liu (2008). J. Colloid. Interf. Sci. 326, 392–395.

    Article  CAS  Google Scholar 

  2. J. Hu, T. W. Odom, and C. M. Lieber (1999). Acc. Chem. Res. 32, 435–445.

    Article  CAS  Google Scholar 

  3. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley (1996). Nature 384, 147–150.

    Article  CAS  Google Scholar 

  4. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan (2003). Adv. Mater. 15, 353–389.

    Article  CAS  Google Scholar 

  5. G. Y. Shan, X. G. Kong, X. Wang, and Y. C. Liu (2005). Surf. Sci. 582, 61–68.

    Article  CAS  Google Scholar 

  6. V. Subramanian, E. E. Wolf, and P. V. Kamat (2004). J. Am. Chem. Soc. 126, (15), 4943–4950.

    Article  CAS  Google Scholar 

  7. G. Bajaj and R. K. Soni (2010). Appl. Surf. Sci. 256, 6399–6402.

    Article  CAS  Google Scholar 

  8. R. Zamiri, A. Zakaria, R. Jorfi, G. Zamiri, M. Shokati Mojdehi, H. Abbastabar Ahangar, and A. Khorsand Zak (2013). Appl. Phys. A. 111, 487–493.

    Article  CAS  Google Scholar 

  9. E. Solati, M. Mashayekh, and D. Dorranian (2013). Appl. Phys. A. 112, 689–694.

    Article  CAS  Google Scholar 

  10. E. Solati and D. Dorranian (2014). J. Clust. Sci.. doi:10.1007/s10876-014-0732-2.

    Google Scholar 

  11. G. Compagnini, E. Messina, O. Puglisi, and V. Nicolosi (2007). Appl. Surf. Sci. 254, 1007–1011.

    Article  CAS  Google Scholar 

  12. A. T. Izgaliev, A. V. Simakin, G. A. Shafeev, and F. Bozon-Verduraz (2004). Chem. Phys. Lett. 390, 467–471.

    Article  CAS  Google Scholar 

  13. E. Messina, L. D’Urso, E. Fazio, C. Satriano, M. G. Donato, C. D’Andrea, O. M. Marago, P. G. Gucciardi, G. Compagnini, and F. Neri (2012). J. Quant. Spectrosc. Radiat. 113, 2490–2498.

    Article  CAS  Google Scholar 

  14. G. Compagnini, E. Messina, O. Puglisi, R. S. Cataliotti, and V. Nicolosi (2008). Chem. Phys. Lett. 457, 386–390.

    Article  CAS  Google Scholar 

  15. E. Fazio, P. Calandra, V. T. Liveri, N. Santo, and S. Trusso (2011). Eng. Asp. 392, 171–177.

    Article  CAS  Google Scholar 

  16. E. Solati, L. Dejam, and D. Dorranian (2014). Opt. Laser. Technol. 58, 26–32.

    Article  CAS  Google Scholar 

  17. N. L. Tarwal, R. S. Devan, Y. R. Ma, R. S. Patil, M. M. Karanjkar, and P. S. Patil (2012). Electrochim. Acta 72, 32–39.

    Article  CAS  Google Scholar 

  18. M. Abaker, G. N. Dar, A. Umar, S. A. Zaidi, A. A. Ibrahim, S. Baskoutas, and A. Al-Hajry (2012). Sci. Adv. Mater. 4, 893–900.

    Article  CAS  Google Scholar 

  19. J. Tauc, R. Grigorovici, and A. Vancu (1996). Phys. Stat. Sol. 15, 627.

    Article  Google Scholar 

  20. J. I. Pankove Optical Process in Semiconductors, 1st ed (Prentice Hall Inc., New Jersey, 1971).

    Google Scholar 

  21. M. A. Gondal, Q. A. Drmosh, Z. H. Yamani, and T. A. Saleh (2009). Appl. Surf. Sci. 256, 298–304.

    Article  CAS  Google Scholar 

  22. Q. A. Drmosh, M. A. Gondal, Z. H. Yamani, and T. A. Saleh (2010). Appl. Surf. Sci. 256, 4661–4666.

    Article  CAS  Google Scholar 

  23. D. Dorranian, E. Solati, and L. Dejam (2012). Appl. Phys. A. 109, 307–314.

    Article  CAS  Google Scholar 

  24. T. Singh, D. K. Pandya, and R. Singh (2012). Thin Solid Films 520, 4646–4649.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmira Solati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrani, A., Dorranian, D. & Solati, E. Properties of Au/ZnO Nanocomposite Prepared by Laser Irradiation of the Mixture of Individual Colloids. J Clust Sci 26, 1743–1754 (2015). https://doi.org/10.1007/s10876-015-0872-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0872-z

Keywords

Navigation