Skip to main content
Log in

Synthesis and Crystal Structure of New Lacunary Wells–Dawson with an Unprecedented Eu-Substituted Sandwiched Cluster

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A new red emitting sandwich-type phosphotungstate built on the lacunary Wells–Dawson polyanion [W17(PO4)1.75O52]10− and trivalent rare earth ion, \({\text{K}}_{ 8} \left[ {{\text{W}}_{ 3 5} {\text{Eu}}_{0. 5} \left( {{\text{PO}}_{ 4} } \right)_{ 1. 7 5} {\text{O}}_{ 10 5} } \right]_{2}\)·15·5H2O (1) has been synthesized and characterized by SEM-EDX, single crystal X-ray diffraction, and PL spectroscopy. It crystallizes in the monoclinic space group C2/c with unit cell dimensions a = 43.523(4) Å, b = 12.3522(6) Å, c = 29.4592(12) Å, β = 100.933(6)°, Z = 2 and 15,549.8(16) Å3. The crystal structure has been determined and refined to R1 and wR2 were 0.0682 and 0.1652 respectively. In this polyanion, two symmetrical EuIII cations sandwiched between C 2 symmetry related lacunary Wells–Dawson-like anions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. L. Hill (1998). Chem. Rev. 98, 1–2.

    Article  CAS  Google Scholar 

  2. J. M. Clemente-Juanand and E. Coronado (1999). Coord. Chem. Rev. 193–195, 361–394.

    Article  Google Scholar 

  3. C. Huangand and Z. Bian, Rare Earth Coordination Chemistry (Wiley, New York, 2010), pp. 1–39.

  4. C. M. Granadeiro, B. de Castro, S. S. Balula, and L. Cunha-Silva (2013). Polyhedron 52, 10–24.

    Article  CAS  Google Scholar 

  5. M. A. AlDamen, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, C. Martí-Gastaldo, F. Luis, and O. Montero (2009). Inorg. Chem. 48, 3467–3479.

    Article  CAS  Google Scholar 

  6. M. A. AlDamen, J. M. Clemente-Juan, E. Coronado, C. Martí-Gastaldo, and A. Gaita-Ariño (2008). J. Am. Chem. Soc. 130, 8874–8875.

    Article  CAS  Google Scholar 

  7. M. Sadakane, M. H. Dickman, and M. T. Pope (2001). Inorg. Chem. 40, 2715.

    Article  CAS  Google Scholar 

  8. Q.-H. Luo, R. C. Howell, M. Dankova, J. Bartis, C. W. Williams, W. D. Horrocks, V. G. Young, A. L. Rheingold, L. C. Francesconi, and M. R. Antonio (2001). Inorg. Chem. 40, 1894–1901.

    Article  CAS  Google Scholar 

  9. C. Zhang, R. C. Howell, Q.-H. Luo, H. L. Fieselmann, L. J. Todaro, and L. C. Francesconi (2005). Inorg. Chem. 44, 3569–3578.

    Article  CAS  Google Scholar 

  10. Q. Luo, R. C. Howell, J. Bartis, M. Dankova, W. D. Horrocks, A. L. Rheingold, and L. C. Francesconi (2002). Inorg. Chem. 41, 6112–6117.

    Article  CAS  Google Scholar 

  11. J. Niu, J. Zhao, D. Guo, and J. Wang (2004). J. Mol. Struct. 692, 223–229.

    Article  CAS  Google Scholar 

  12. Y. Lu, Y. Li, E. Wang, X. Xu, and Y. Ma (2007). Inorg. Chim. Acta. 360, 2063–2070.

    Article  CAS  Google Scholar 

  13. H.-Y. Zhao, J.-W. Zhao, B.-F. Yang, H. He, and G.-Y. Yang (2014). Cryst. Eng. Commun. 16, 2230–2238.

    Article  CAS  Google Scholar 

  14. Y. Bai, D. Yang, J. Wang, and J. Niu (2008). J. Rare Earths 26, 478–482.

    Article  Google Scholar 

  15. C. Boglio, G. Lenoble, C. Duhayon, B. Hasenknopf, R. Thouvenot, C. Zhang, R. C. Howell, B. P. Burton-Pye, L. C. Francesconi, E. Lacôte, S. Thorimbert, M. Malacria, C. Afonso, and J.-C. Tabet (2006). Inorg. Chem. 45, 1389–1398.

    Article  CAS  Google Scholar 

  16. C. Zhang, L. Bensaid, D. McGregor, X. Fang, R. Howell, B. Burton-Pye, Q. Luo, L. Todaro, and L. Francesconi (2006). J. Clust. Sci. 17, 389–425.

    Article  CAS  Google Scholar 

  17. X. Fang, T. M. Anderson, C. Benelli, and C. L. Hill (2005). Chem. Eur. J. 11, 712–718.

    Article  CAS  Google Scholar 

  18. S. Zhang, D. Zhang, P. Ma, Y. Liang, J. Wang, and J. Niu (2013). Cryst. Eng. Commun. 15, 2992–2998.

    Article  CAS  Google Scholar 

  19. R. Gupta, M. K. Saini, F. Doungmene, P. de Oliveira, and F. Hussain (2014). Dalton Trans. 43, 8290–8299.

    Article  CAS  Google Scholar 

  20. I. Creaser, M. C. Heckel, R. J. Neitz, and M. T. Pope (1993). Inorg. Chem. 32, 1573–1578.

    Article  CAS  Google Scholar 

  21. M. Zimmermann, N. Belai, R. J. Butcher, M. T. Pope, E. V. Chubarova, M. H. Dickman, and U. Kortz (2007). Inorg. Chem. 46, 1737–1740.

    Article  CAS  Google Scholar 

  22. B. Godin, J. Vaissermann, P. Herson, L. Ruhlmann, M. Verdaguer, and P. Gouzerh (2005). Chem. Commun. 45, 5624–5626.

    Article  Google Scholar 

  23. S. Yao, Z. Zhang, Y. Li, and E. Wang (2009). Dalton Trans. 41, 1786–1791.

    Article  Google Scholar 

  24. T. Boyd, S. G. Mitchell, H. N. Miras, D.-L. Long, and L. Cronin (2010). Dalton Trans. 39, 6460–6465.

    Article  CAS  Google Scholar 

  25. C. P. Pradeep, D.-L. Long, C. Streb, and L. Cronin (2008). J. Am. Chem. Soc. 130, 14946–14947.

    Article  CAS  Google Scholar 

  26. A. P. Ginsberg, in A. P. Ginsberg (ed.), Inorganic Synthesis (Wiley, New York, 1990), pp. 464.

  27. CrysAlisPro, CrysAlis Software System (Version 1.171) (2002).

  28. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339–341.

  29. G. M. Sheldrick, SHELXL-97, Program for X-ray Crystal Structure Refinement (1997).

  30. CrystalMaker, CrystalMaker Software (2009).

  31. C.-D. Zhang, S.-X. Liu, F.-J. Ma, R.-K. Tan, W. Zhang, and Z.-M. Su (2010). Dalton Trans. 39, 8033–8037.

    Article  CAS  Google Scholar 

  32. D.-D. Liuand and Y.-G. Chen (2013). Inorg. Chim. Acta. 401, 70–75.

    Article  Google Scholar 

  33. C. Zhang, R. C. Howell, K. B. Scotland, F. G. Perez, L. Todaro, and L. C. Francesconi (2004). Inorg. Chem. 43, 7691–7701.

    Article  CAS  Google Scholar 

  34. S.-T. Wu, S.-M. Lu, H.-L. Tang, B.-B. Deng, X.-H. Huang, and C.-C. Huang (2014). J. Clust. Sci. 25, 1413–1424.

    Article  CAS  Google Scholar 

  35. C. Rocchiccioli-deltcheffand and R. Thouvenot (1979). Spectrosc. Lett. 12, 127–138.

    Article  Google Scholar 

  36. H. K. Juwhari and W. B. White (2010). Mat. Lett. 64, 1751–1754.

    Article  CAS  Google Scholar 

  37. H. K. Juwhari and W. B. White (2012). Mat. Lett. 88, 16–18.

    Article  CAS  Google Scholar 

  38. M. AlDamen and S. Haddad (2011). J. Coord. Chem. 64, 4244–4253.

    Article  Google Scholar 

Download references

Acknowledgments

The researchers would like to thank the Deanship of Scientific Research at King Faisal University for the generous financial support (Project No. 140174). Also, they acknowledge the Deanship of Scientific Research at the University of Jordan and Hamdi Mango Center for Scientific Research (HMCSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murad A. AlDamen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafawein, J., Juwhari, H.K. & AlDamen, M.A. Synthesis and Crystal Structure of New Lacunary Wells–Dawson with an Unprecedented Eu-Substituted Sandwiched Cluster. J Clust Sci 26, 1683–1692 (2015). https://doi.org/10.1007/s10876-015-0867-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0867-9

Keywords

Navigation