Skip to main content
Log in

Protonated 2-Aminonicotinic Acid as Charge Complement in POM-Based Inorganic–Organic Hybrids: Synthesis, Crystal Structure and Characterization

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two supramolecular compounds, (2-HANA)4(SiW12O40)·12H2O (1) and (H3O)(2-HANA)2(HPW12O40)·11H2O (2), ANA = 2-aminonicotinic acid, were synthesized in conventional method in aqueous solution and characterized with elemental analysis, IR spectrography, thermal analysis. Their crystal structures were determined with X-ray single-crystal diffraction and CV behavior were examined. In the compounds ANA is protonated and acts as charge complement and hydrogen bond donor and acceptor. In 1 there is a supramolecular chain formed through fourfold hydrogen bonds between water molecules and SiW12 anions, and in 2 a supramolecular layer is formed by hydrogen bonds between protonated O1W molecules and PW12 anions. The protonated water molecule is identified from IR spectrum of 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. J. Borrys-Almener, E. Coronado, A. Müller, and M. T. Pope Polyoxometalate Molecular Science (Kluwer, Dordrecht, 2003).

    Book  Google Scholar 

  2. D. -L. Long, E. Burkholder, and L. Cronin (2007). Chem. Soc. Rev. 36, 105.

    Article  CAS  Google Scholar 

  3. M. M. Heravi and S. Sadjadi (2009). J. Iran. Chem. Soc. 6, 1.

    Article  CAS  Google Scholar 

  4. A. Dolbecq, E. Dumas, C. R. Mayer, and P. Mialane (2010). Chem. Rev. 110, 6009.

    Article  CAS  Google Scholar 

  5. H. N. Miras, J. Yan, D. -L. Long, and L. Cronin (2012). Chem. Soc. Rev. 41, 7403.

    Article  CAS  Google Scholar 

  6. R. Yu, X. -F. Kuang, X. -Y. Wu, C. -Z. Lu, and J. P. Donahue (2009). Coord. Chem. Rev. 253, 2872.

    Article  CAS  Google Scholar 

  7. D. -L. Long, R. Tsunashima, and L. Cronin (2010). Angew. Chem. Int. Ed. Eng. 49, 1736.

    Article  CAS  Google Scholar 

  8. K. Uehara, K. Kasai, and N. Mizuno (2007). Inorg. Chem. 46, 2563.

    Article  CAS  Google Scholar 

  9. C. H. Li, K. L. Huang, and Y. N. Chi (2009). Inorg. Chem. 48, 2010.

    Article  CAS  Google Scholar 

  10. X. L. Hao, M. F. Luo, and W. Yao (2011). Dalton Trans. 40, 5971.

    Article  CAS  Google Scholar 

  11. M. -X. Hu, Y.-G. Chen, C. -J. Zhang, and Q. -J. Kong (2010). CrystEngComm 12, 1454.

    Article  CAS  Google Scholar 

  12. S. Li, P. Ma, J. Wang, Y. Guo, H. Niu, J. Zhao, and J. Niu (2010). CrystEngComm 12, 1718.

    Article  CAS  Google Scholar 

  13. X. Liu, B. Liu, and G. Xue (2012). Solid State Sci. 14, 611.

    Article  CAS  Google Scholar 

  14. G. Li, C. Salim, and H. Hinode (2008). Solid State Sci. 10, 121.

    Article  CAS  Google Scholar 

  15. F. M. Zonoz, A. Jamshidi, and S. Tavakoli (2013). Solid State Sci. 17, 83.

    Article  Google Scholar 

  16. E. Coronado, C. Giménez-Saiz, C. J. Gómez-García, and F. M. Romero (2008). Solid State Sci. 10, 1794.

    Article  CAS  Google Scholar 

  17. S. Lu, Y. -G. Chen, D. -M. Shi, and H. -J. Pang (2008). Inorg. Chim. Acta 361, 2343.

    Article  CAS  Google Scholar 

  18. W. Kwak, M. T. Pope, and T. F. Scully (1975). J. Am. Chem. Soc. 97, 5735.

    Article  CAS  Google Scholar 

  19. E. M. McCarron III, J. F. Whitney, and D. B. Chase (1984). Inorg. Chem. 23, 3275.

    Article  CAS  Google Scholar 

  20. J. L. Stark, V. G. Young Jr, and E. A. Maatta (2003). Angew Chem. Inter. Ed. Eng. 34, 2547.

    Article  Google Scholar 

  21. A. Proust, R. Thouvenot, and P. Gouzerh (2008). Chem. Commun. 1837.

  22. D. Schaming, C. Costa-Coquelard, I. Lampre, S. Sorgues, M. Erard, X. Liu, J. Liu, L. Sun, J. Canny, R. Thouvenot, and L. Ruhlmann (2010). Inorg. Chim. Acta 363, 2185.

    Article  CAS  Google Scholar 

  23. E. Burkholder and J. Zubieta (2001). Chem. Commun. 2056.

  24. M. P. Lowe, J. C. Lockhart, W. Clegg, and K. A. Fraser (1994). Angew. Chem. Int. Ed. Eng. 33, 451.

    Article  Google Scholar 

  25. I. Bar-Nahum, K. V. Narasimhulu, L. Weiner, and R. Neumann (2005). Inorg. Chem. 44, 4900.

    Article  CAS  Google Scholar 

  26. C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, and R. Thouvenot (1983). Inorg. Chem. 22, 207.

    Article  CAS  Google Scholar 

  27. W. H. Knoth, P. J. Domaille, and R. D. Farlee (1985). Organometallics 62, 4.

    Google Scholar 

  28. G. M. Sheldrick SHELXS97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  29. F. Berrah, S. Bouacid, H. Anana, and T. Roisnel (2012). Acta Cryst. E68, o1601.

    Google Scholar 

  30. R. Bouchene, S. Bouacid, F. Berrah, and J. -C. Daran (2012). Acta Cryst. E68, o1493.

    Google Scholar 

  31. A. Kobayashi and Y. Sasaki (1975). J. Chem. Soc. Jpn. 48, 885.

    Article  CAS  Google Scholar 

  32. F. X. Meng, Y. -G. Chen, H. B. Liu, H. J. Pang, D. M. Shi, and Y. Sun (2007). J. Mol. Struct. 837, 224.

    Article  CAS  Google Scholar 

  33. Q. -J. Kong, M. -X. Hu, and Y. -G. Chen (2011). J. Coord. Chem. 64, 3237.

    Article  CAS  Google Scholar 

  34. C. Pazé, S. Bordiga, and A. Zecchina (2000). Langmuir 16, 8139.

    Article  Google Scholar 

  35. A. Bielánski and A. Lubánska (2004). J. Mol. Catal. A: Chem. 224, 179.

    Article  Google Scholar 

  36. R. Thouvenot, M. Fournier, and R. Franck (1984). Inorg. Chem. 23, 598.

    Article  CAS  Google Scholar 

  37. M. T. Pope and G. M. Varga Jr (1966). Inorg. Chem. 7, 1249.

    Article  Google Scholar 

  38. S. Himeno and M. Takamoto (2002). J. Electroanal. Chem. 528, 170.

    Article  CAS  Google Scholar 

  39. M. -H. Chiang, J. A. Dzielawa, M. L. Dietz, and M. R. Antonio (2004). J. Electroanal. Chem. 567, 77.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Guang Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 941 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, DX., Liu, HB., Chen, YG. et al. Protonated 2-Aminonicotinic Acid as Charge Complement in POM-Based Inorganic–Organic Hybrids: Synthesis, Crystal Structure and Characterization. J Clust Sci 26, 1567–1576 (2015). https://doi.org/10.1007/s10876-015-0851-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0851-4

Keywords

Navigation