Skip to main content
Log in

Stabilization of (CuX) n Clusters (X = Cl, Br, I; n = 2, 4, 5, 6, 8) in Mono- and Dithioether-Containing Layered Coordination Polymers

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

More than 50 of layered (i.e., 2D) coordination polymers containing (CuX) n clusters (X = Cl, Br, I; n = 2, 4, 5, 6, and 8) as secondary building units (SBUs) and mono- and dithioether as assembling ligands are described. This mini-review is separated into two categories; mono- (10) and dithioether (45 polymers), devoted on 2D networks. Within these 55 2D structures visited, the occurrence of the SBU motifs (CuX) n where n = 2, 4, 5, 6, and 8 are dominated by the rhomboids (Cu2X2Sx; 30) and the closed and open cubanes (Cu4I4S4; 16). Only 10 different other SBU motifs are found in these 2D materials (note that one polymer shares two different motifs). Some emission properties are also provided. Generally, closed cubane cluster-containing coordination polymers exhibit more intense emissions than the rhomboid dimers, which are very weakly or non-emissive.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47

Similar content being viewed by others

References

  1. H. Bai, C. Li, and G. Shi (2011). Adv. Mater. 23, 1089–1115.

    Article  CAS  Google Scholar 

  2. M. Vitale and P. C. Ford (2001). Coord. Chem. Rev. 219–221, 3625–3648.

    Google Scholar 

  3. M. Knorr and F. Guyon, Luminescent oligomeric and polymeric copper coordination compounds assembled by thioether ligands, in Macromolecules containing metal and metal-like elements, Photophysics and photochemistry of metal-containing polymers, ed. by A.S.A.-E. Aziz, C.E. Carraher, P.D. Harvey, C.U. Pittmann, M. Zeldin, vol 10 (John Wiley & Sons, 2010), pp. 89–158.

  4. P. D. Harvey and M. Knorr (2010). Macromol. Rapid Commun. 31, 808–826.

    Article  CAS  Google Scholar 

  5. M. Knorr, F. Guyon, A. Khatyr, C. Strohmann, M. Allain, S. M. Aly, A. Lapprand, D. Fortin, and P. D. Harvey (2012). Inorg. Chem. 51, 9917–9934.

    Article  CAS  Google Scholar 

  6. F. Olbrich, H. Mälger, and G. Klar (1992). Transit. Met. Chem. 17, 525–529.

    Article  CAS  Google Scholar 

  7. J. San Filippo Jr., L. E. Zyontz, and J. Potenza (1975). Inorg. Chem. 14, 1667–1671.

    Article  CAS  Google Scholar 

  8. B. Lenders, D. M. Grove, G. Van Koten, W. J. J. Smeets, P. Van der Sluis, and A. L. Spek (1991). Organometallics 10, 786–791.

    Article  CAS  Google Scholar 

  9. H. Mälger, F. Olbrich, J. Kopf, D. Abeln, and E. Weiss (1992). Z. Naturforsch. B 47, 1276–1280.

    Google Scholar 

  10. J. Zhou, G.-Q. Bian, J. Dai, Y. Zhang, Q.-Y. Zhu, and W. Lu (2006). Inorg. Chem. 45, 8486–8488.

    Article  CAS  Google Scholar 

  11. A. Lapprand, A. Bonnot, M. Knorr, Y. Rousselin, M. M. Kubicki, D. Fortin, and P. D. Harvey (2013). Chem. Commun. 49, 8848–8850.

    Article  CAS  Google Scholar 

  12. F. Rabilloud and D. Mathian (2012). J. Clust. Sci. 23, 165–176.

    Article  CAS  Google Scholar 

  13. Q. Ye, M.-L. Liu, Z.-Q. Chen, S.-W. Sun, and R.-G. Xiong (2012). Organometallics 31, 7862–7869.

    Article  CAS  Google Scholar 

  14. A. Dhakshinamoorthy, M. Alvaro, and H. Garcia (2012). Chem. Commun. 48, 11275–11288.

    Article  CAS  Google Scholar 

  15. E. Solari, S. De Angelis, M. Latronico, C. Floriani, A. Chiesi-Villa, and C. Rizzoli (1996). J. Clust. Sci. 7, 553–566.

    Article  CAS  Google Scholar 

  16. J.-M. Poblet and M. Benard (1998). Chem. Commun. 1179–1180.

  17. H. L. Hermann, G. Boche, and P. Schwerdtfeger (2001). Chem. Eur. J. 7, 5333–5342.

    Article  CAS  Google Scholar 

  18. N. Kuganathan and J. C. Green (2008). Chem. Commun. 2432–2434.

  19. E. W. Ainscough, A. M. Brodie, J. M. Husbands, G. J. Gainsford, E. J. Gabe, and N. F. Curtis (1985). J. Chem. Soc. Dalton Trans. 151–158.

  20. K. M. Henline, C. Wang, R. D. Pike, J. C. Ahern, B. Sousa, H. H. Patterson, A. T. Kerr, and C. L. Cahill (2014). Cryst. Growth Des. 14, 1449–1458.

    Article  CAS  Google Scholar 

  21. L. I. Kursheva, O. N. Kataeva, D. B. Krivolapov, E. S. Batyeva, and O. G. Sinyashin (2006). Heteroat. Chem. 17, 542–546.

    Article  CAS  Google Scholar 

  22. R. D. Adams, M. Huang, and S. Johnson (1998). Polyhedron 17, 2775–2780.

    Article  CAS  Google Scholar 

  23. A. J. Blake, N. R. Brooks, N. R. Champness, M. Crew, D. H. Gregory, P. Hubberstey, M. Schroder, A. Deveson, D. Fenske and L. R. Hanton (2001). Chem. Commun. 1432–1433.

  24. M. Knorr, F. Guyon, A. Khatyr, M. Allain, S. M. Aly, A. Lapprand, D. Fortin, and P. D. Harvey (2010). J. Inorg. Organomet. Polym. Mater. 20, 534–543.

    Article  CAS  Google Scholar 

  25. L. I. Kursheva, O. N. Kataeva, A. T. Gubaidullin, F. S. Khasyanzyanova, E. V. Vakhitov, D. B. Krivolapov, and E. S. Batyeva (2003). Russ. J. Gen. Chem. 73, 1516–1521.

    Article  CAS  Google Scholar 

  26. H. N. Peindy, F. Guyon, A. Khatyr, M. Knorr, and C. Strohmann (2007). Eur. J. Inorg. Chem. 1823–1828.

  27. N. R. Brooks, A. J. Blake, N. R. Champness, P. A. Cooke, P. Hubberstey, D. M. Proserpio, C. Wilson, and M. Schröder (2001). J. Chem. Soc. Dalton Trans. 456–465.

  28. Y. Suenaga, M. Maekawa, T. Kuroda-Sowa, M. Munakata, H. Morimoto, N. Hiyama, and S. Kitagawa (1997). Anal. Sci. 13, 1047–1049.

    Article  CAS  Google Scholar 

  29. C. W. Dirk, M. Bousseau, P. H. Barrett, F. Moraes, F. Wudl, and A. J. Heeger (1986). Macromolecules 19, 266–269.

    Article  CAS  Google Scholar 

  30. S. Kim, E. Lee, K.-M. Park, and S. S. Lee (2013). CrystEngComm. 15, 8544–8551.

    Article  CAS  Google Scholar 

  31. M. Vitale, W. E. Palke, and P. C. Ford (1992). J. Phys. Chem. 96, 8329–8336.

    Article  CAS  Google Scholar 

  32. M. Vitale, C. K. Ryu, W. E. Palke, and P. C. Ford (1994). Inorg. Chem. 33, 561–566.

    Article  CAS  Google Scholar 

  33. L. Chen, L. K. Thompson, S. S. Tandon, and J. N. Bridson (1993). Inorg. Chem. 32, 4063–4068.

    Article  CAS  Google Scholar 

  34. H. N. Peindy, F. Guyon, A. Khatyr, M. Knorr, V. H. Gessner, and C. Strohmann (2009). Z. Anorg. Allg. Chem. 635, 2099–2105.

    Article  CAS  Google Scholar 

  35. C. Xie, L. Zhou, W. Feng, J. Wang, and W. Chen (2009). J. Mol. Struct. 921, 132–136.

    Article  CAS  Google Scholar 

  36. M. Knorr, F. Guyon, M. M. Kubicki, Y. Rousselin, S. M. Aly, and P. D. Harvey (2011). New J. Chem. 35, 1184–1188.

    Article  CAS  Google Scholar 

  37. M. Knorr, C. Strohmann, M. M. Kubicki, and Y. Rousselin (unpublished results)

  38. M. Knorr, F. Guyon, A. Khatyr, C. Däschlein, C. Strohmann, S. M. Aly, A. S. Abd-El-Aziz, D. Fortin, and P. D. Harvey (2009). Dalton Trans. 948–955.

  39. S. M. Aly, A. Pam, A. Khatyr, M. Knorr, Y. Rousselin, M. M. Kubicki, J. O. Bauer, C. Strohmann, and P. D. Harvey (2014). J. Inorg. Organomet. Polym. Mater. 24, 190–200.

    Article  CAS  Google Scholar 

  40. J. Zhang, Y.-S. Xue, Y.-Z. Li, H.-B. Du, and X.-Z. You (2011). Cryst. Eng. Commun. 13, 2578–2585.

    Article  CAS  Google Scholar 

  41. I. Romero, G. Sanchez-Castello, F. Teixidor, C. R. Whitaker, J. Rius, C. Mirvitlles, T. Flor, L. Escriche, and J. Casabo (1996). Polyhedron 15, 2057–2065.

    Article  CAS  Google Scholar 

  42. T. H. Kim, G. Park, Y. W. Shin, K.-M. Park, M. Y. Choi, and J. Kim (2008). Bull. Korean Chem. Soc. 29, 499–502.

    Article  CAS  Google Scholar 

  43. T. H. Kim, Y. W. Shin, S. S. Lee, and J. Kim (2007). Inorg. Chem. Commun. 10, 11–14.

    Article  CAS  Google Scholar 

  44. T. H. Kim, Y. W. Shin, J. H. Jung, J. S. Kim, and J. Kim (2008). Angew. Chem. Int. Ed. Engl. 47, 685–688.

    Article  CAS  Google Scholar 

  45. H. J. Kim, M. R. Song, S. Y. Lee, J. Young, L. Shim, and S. Lee (2008). Eur. J. Inorg. Chem. 3532–3539.

  46. M. Jo, J. Seo, L. F. Lindoy, and S. S. Lee (2009). Dalton Trans. 6096–6098.

  47. H. Ryu, K.-M. Park, M. Ikeda, Y. Habata, and S. S. Lee (2014). Inorg. Chem. 53, 4029–4038.

    Article  CAS  Google Scholar 

  48. I.-H. Park, H. J. Kim, and S. S. Lee (2012). CrystEngComm. 14, 4589–4595.

    Article  CAS  Google Scholar 

  49. Y.-C. Yang, S.-T. Lin, and C.-C. Cao (2007). J. Chin. Chem. Soc. 54, 587–594.

    CAS  Google Scholar 

  50. M. Munakata, L. P. Wu, T. Kuroda-Sowa, M. Maekawa, Y. Suenaga, and S. Nakagawa (1996). J. Chem. Soc. Dalton Trans. 1525–1530.

  51. S. Q. Liu, H. Konaka, T. Kuroda-Sowa, Y. Suenaga, H. Ito, G. L. Ning, and M. Munakata (2004). Inorg. Chim. Acta 357, 3621–3631.

    Article  CAS  Google Scholar 

  52. I.-H. Park and S. S. Lee (2011). CrystEngComm. 13, 6520–6525.

    Article  CAS  Google Scholar 

  53. T. Röttgers and W. S. Sheldrick (2002). Z. Anorg. Allg. Chem. 628, 1305–1310.

    Article  Google Scholar 

  54. T. Röttgers and W. S. Sheldrick (2000). J. Solid State Chem. 152, 271–279.

    Article  Google Scholar 

  55. P. D. Harvey, A. Bonnot, A. Lapprand, C. Strohmann, and M. Knorr (2015). Macromol. Rapid Commun. 36 (in press).

  56. X.-C. Shan, H.-B. Zhang, L. Chen, M.-Y. Wu, F.-L. Jiang, and M.-C. Hong (2013). Cryst. Growth Des. 13, 1377–1381.

    Article  CAS  Google Scholar 

  57. Y. Zhang, T. Wu, R. Liu, T. Dou, X. Bu, and P. Feng (2010). Cryst. Growth Des. 10, 2047–2049.

    Article  CAS  Google Scholar 

  58. Q. Hou, J.-H. Yu, J.-N. Xu, Q.-F. Yang, and J.-Q. Xu (2009). CrystEngComm. 11, 2452–2455.

    Article  CAS  Google Scholar 

  59. M. Bi, G. Li, J. Hua, Y. Liu, X. Liu, Y. Hu, Z. Shi, and S. Feng (2007). Cryst. Growth Des. 7, 2066–2070.

    Article  CAS  Google Scholar 

  60. T. H. Kim, K. Y. Lee, Y. W. Shin, S.-T. Moon, K.-M. Park, J. S. Kim, Y. Kang, S. S. Lee, and J. Kim (2005). Inorg. Chem. Commun. 8, 27–30.

    Article  CAS  Google Scholar 

  61. T. H. Kim, S. Lee, Y. Jeon, Y. W. Shin, and J. Kim (2013). Inorg. Chem. Commun. 33, 114–117.

    Article  CAS  Google Scholar 

  62. T. H. Kim, H. Yang, G. Park, K. Y. Lee, and J. Kim (2010). Chem. Asian J. 5, 252–255.

    Article  CAS  Google Scholar 

  63. G. Park, H. Yang, T. H. Kim, and J. Kim (2011). Inorg. Chem. 50, 961–968.

    Article  CAS  Google Scholar 

  64. L. Carlucci, G. Ciani, D. M. Proserpio, T. G. Mitina, and V. A. Blatov (2014). Chem. Rev. 114, 7557–7580.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all the students and collaborators that are listed in the corresponding references. The Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds de recherche du Québec—Nature et technologies (FRQNT), the Centre Québécois pour les Matériaux Fonctionnels (CQMF), and the Centre des Matériaux Optiques et Photoniques de l’Université de Sherbrooke (CEMOPUS) as well as the CNRS are acknowledged for funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierre D. Harvey or Michael Knorr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harvey, P.D., Knorr, M. Stabilization of (CuX) n Clusters (X = Cl, Br, I; n = 2, 4, 5, 6, 8) in Mono- and Dithioether-Containing Layered Coordination Polymers. J Clust Sci 26, 411–459 (2015). https://doi.org/10.1007/s10876-014-0831-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0831-0

Keywords

Navigation