Journal of Cluster Science

, Volume 26, Issue 2, pp 411–459 | Cite as

Stabilization of (CuX) n Clusters (X = Cl, Br, I; n = 2, 4, 5, 6, 8) in Mono- and Dithioether-Containing Layered Coordination Polymers

  • Pierre D. Harvey
  • Michael Knorr
Review Paper


More than 50 of layered (i.e., 2D) coordination polymers containing (CuX) n clusters (X = Cl, Br, I; n = 2, 4, 5, 6, and 8) as secondary building units (SBUs) and mono- and dithioether as assembling ligands are described. This mini-review is separated into two categories; mono- (10) and dithioether (45 polymers), devoted on 2D networks. Within these 55 2D structures visited, the occurrence of the SBU motifs (CuX) n where n = 2, 4, 5, 6, and 8 are dominated by the rhomboids (Cu2X2Sx; 30) and the closed and open cubanes (Cu4I4S4; 16). Only 10 different other SBU motifs are found in these 2D materials (note that one polymer shares two different motifs). Some emission properties are also provided. Generally, closed cubane cluster-containing coordination polymers exhibit more intense emissions than the rhomboid dimers, which are very weakly or non-emissive.

Graphical abstract


Copper Halide 2D networks Luminescence Thioether 



The authors thank all the students and collaborators that are listed in the corresponding references. The Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds de recherche du Québec—Nature et technologies (FRQNT), the Centre Québécois pour les Matériaux Fonctionnels (CQMF), and the Centre des Matériaux Optiques et Photoniques de l’Université de Sherbrooke (CEMOPUS) as well as the CNRS are acknowledged for funding.


  1. 1.
    H. Bai, C. Li, and G. Shi (2011). Adv. Mater. 23, 1089–1115.CrossRefGoogle Scholar
  2. 2.
    M. Vitale and P. C. Ford (2001). Coord. Chem. Rev. 219–221, 3625–3648.Google Scholar
  3. 3.
    M. Knorr and F. Guyon, Luminescent oligomeric and polymeric copper coordination compounds assembled by thioether ligands, in Macromolecules containing metal and metal-like elements, Photophysics and photochemistry of metal-containing polymers, ed. by A.S.A.-E. Aziz, C.E. Carraher, P.D. Harvey, C.U. Pittmann, M. Zeldin, vol 10 (John Wiley & Sons, 2010), pp. 89–158.Google Scholar
  4. 4.
    P. D. Harvey and M. Knorr (2010). Macromol. Rapid Commun. 31, 808–826.CrossRefGoogle Scholar
  5. 5.
    M. Knorr, F. Guyon, A. Khatyr, C. Strohmann, M. Allain, S. M. Aly, A. Lapprand, D. Fortin, and P. D. Harvey (2012). Inorg. Chem. 51, 9917–9934.CrossRefGoogle Scholar
  6. 6.
    F. Olbrich, H. Mälger, and G. Klar (1992). Transit. Met. Chem. 17, 525–529.CrossRefGoogle Scholar
  7. 7.
    J. San Filippo Jr., L. E. Zyontz, and J. Potenza (1975). Inorg. Chem. 14, 1667–1671.CrossRefGoogle Scholar
  8. 8.
    B. Lenders, D. M. Grove, G. Van Koten, W. J. J. Smeets, P. Van der Sluis, and A. L. Spek (1991). Organometallics 10, 786–791.CrossRefGoogle Scholar
  9. 9.
    H. Mälger, F. Olbrich, J. Kopf, D. Abeln, and E. Weiss (1992). Z. Naturforsch. B 47, 1276–1280.Google Scholar
  10. 10.
    J. Zhou, G.-Q. Bian, J. Dai, Y. Zhang, Q.-Y. Zhu, and W. Lu (2006). Inorg. Chem. 45, 8486–8488.CrossRefGoogle Scholar
  11. 11.
    A. Lapprand, A. Bonnot, M. Knorr, Y. Rousselin, M. M. Kubicki, D. Fortin, and P. D. Harvey (2013). Chem. Commun. 49, 8848–8850.CrossRefGoogle Scholar
  12. 12.
    F. Rabilloud and D. Mathian (2012). J. Clust. Sci. 23, 165–176.CrossRefGoogle Scholar
  13. 13.
    Q. Ye, M.-L. Liu, Z.-Q. Chen, S.-W. Sun, and R.-G. Xiong (2012). Organometallics 31, 7862–7869.CrossRefGoogle Scholar
  14. 14.
    A. Dhakshinamoorthy, M. Alvaro, and H. Garcia (2012). Chem. Commun. 48, 11275–11288.CrossRefGoogle Scholar
  15. 15.
    E. Solari, S. De Angelis, M. Latronico, C. Floriani, A. Chiesi-Villa, and C. Rizzoli (1996). J. Clust. Sci. 7, 553–566.CrossRefGoogle Scholar
  16. 16.
    J.-M. Poblet and M. Benard (1998). Chem. Commun. 1179–1180.Google Scholar
  17. 17.
    H. L. Hermann, G. Boche, and P. Schwerdtfeger (2001). Chem. Eur. J. 7, 5333–5342.CrossRefGoogle Scholar
  18. 18.
    N. Kuganathan and J. C. Green (2008). Chem. Commun. 2432–2434.Google Scholar
  19. 19.
    E. W. Ainscough, A. M. Brodie, J. M. Husbands, G. J. Gainsford, E. J. Gabe, and N. F. Curtis (1985). J. Chem. Soc. Dalton Trans. 151–158.Google Scholar
  20. 20.
    K. M. Henline, C. Wang, R. D. Pike, J. C. Ahern, B. Sousa, H. H. Patterson, A. T. Kerr, and C. L. Cahill (2014). Cryst. Growth Des. 14, 1449–1458.CrossRefGoogle Scholar
  21. 21.
    L. I. Kursheva, O. N. Kataeva, D. B. Krivolapov, E. S. Batyeva, and O. G. Sinyashin (2006). Heteroat. Chem. 17, 542–546.CrossRefGoogle Scholar
  22. 22.
    R. D. Adams, M. Huang, and S. Johnson (1998). Polyhedron 17, 2775–2780.CrossRefGoogle Scholar
  23. 23.
    A. J. Blake, N. R. Brooks, N. R. Champness, M. Crew, D. H. Gregory, P. Hubberstey, M. Schroder, A. Deveson, D. Fenske and L. R. Hanton (2001). Chem. Commun. 1432–1433.Google Scholar
  24. 24.
    M. Knorr, F. Guyon, A. Khatyr, M. Allain, S. M. Aly, A. Lapprand, D. Fortin, and P. D. Harvey (2010). J. Inorg. Organomet. Polym. Mater. 20, 534–543.CrossRefGoogle Scholar
  25. 25.
    L. I. Kursheva, O. N. Kataeva, A. T. Gubaidullin, F. S. Khasyanzyanova, E. V. Vakhitov, D. B. Krivolapov, and E. S. Batyeva (2003). Russ. J. Gen. Chem. 73, 1516–1521.CrossRefGoogle Scholar
  26. 26.
    H. N. Peindy, F. Guyon, A. Khatyr, M. Knorr, and C. Strohmann (2007). Eur. J. Inorg. Chem. 1823–1828.Google Scholar
  27. 27.
    N. R. Brooks, A. J. Blake, N. R. Champness, P. A. Cooke, P. Hubberstey, D. M. Proserpio, C. Wilson, and M. Schröder (2001). J. Chem. Soc. Dalton Trans. 456–465.Google Scholar
  28. 28.
    Y. Suenaga, M. Maekawa, T. Kuroda-Sowa, M. Munakata, H. Morimoto, N. Hiyama, and S. Kitagawa (1997). Anal. Sci. 13, 1047–1049.CrossRefGoogle Scholar
  29. 29.
    C. W. Dirk, M. Bousseau, P. H. Barrett, F. Moraes, F. Wudl, and A. J. Heeger (1986). Macromolecules 19, 266–269.CrossRefGoogle Scholar
  30. 30.
    S. Kim, E. Lee, K.-M. Park, and S. S. Lee (2013). CrystEngComm. 15, 8544–8551.CrossRefGoogle Scholar
  31. 31.
    M. Vitale, W. E. Palke, and P. C. Ford (1992). J. Phys. Chem. 96, 8329–8336.CrossRefGoogle Scholar
  32. 32.
    M. Vitale, C. K. Ryu, W. E. Palke, and P. C. Ford (1994). Inorg. Chem. 33, 561–566.CrossRefGoogle Scholar
  33. 33.
    L. Chen, L. K. Thompson, S. S. Tandon, and J. N. Bridson (1993). Inorg. Chem. 32, 4063–4068.CrossRefGoogle Scholar
  34. 34.
    H. N. Peindy, F. Guyon, A. Khatyr, M. Knorr, V. H. Gessner, and C. Strohmann (2009). Z. Anorg. Allg. Chem. 635, 2099–2105.CrossRefGoogle Scholar
  35. 35.
    C. Xie, L. Zhou, W. Feng, J. Wang, and W. Chen (2009). J. Mol. Struct. 921, 132–136.CrossRefGoogle Scholar
  36. 36.
    M. Knorr, F. Guyon, M. M. Kubicki, Y. Rousselin, S. M. Aly, and P. D. Harvey (2011). New J. Chem. 35, 1184–1188.CrossRefGoogle Scholar
  37. 37.
    M. Knorr, C. Strohmann, M. M. Kubicki, and Y. Rousselin (unpublished results)Google Scholar
  38. 38.
    M. Knorr, F. Guyon, A. Khatyr, C. Däschlein, C. Strohmann, S. M. Aly, A. S. Abd-El-Aziz, D. Fortin, and P. D. Harvey (2009). Dalton Trans. 948–955.Google Scholar
  39. 39.
    S. M. Aly, A. Pam, A. Khatyr, M. Knorr, Y. Rousselin, M. M. Kubicki, J. O. Bauer, C. Strohmann, and P. D. Harvey (2014). J. Inorg. Organomet. Polym. Mater. 24, 190–200.CrossRefGoogle Scholar
  40. 40.
    J. Zhang, Y.-S. Xue, Y.-Z. Li, H.-B. Du, and X.-Z. You (2011). Cryst. Eng. Commun. 13, 2578–2585.CrossRefGoogle Scholar
  41. 41.
    I. Romero, G. Sanchez-Castello, F. Teixidor, C. R. Whitaker, J. Rius, C. Mirvitlles, T. Flor, L. Escriche, and J. Casabo (1996). Polyhedron 15, 2057–2065.CrossRefGoogle Scholar
  42. 42.
    T. H. Kim, G. Park, Y. W. Shin, K.-M. Park, M. Y. Choi, and J. Kim (2008). Bull. Korean Chem. Soc. 29, 499–502.CrossRefGoogle Scholar
  43. 43.
    T. H. Kim, Y. W. Shin, S. S. Lee, and J. Kim (2007). Inorg. Chem. Commun. 10, 11–14.CrossRefGoogle Scholar
  44. 44.
    T. H. Kim, Y. W. Shin, J. H. Jung, J. S. Kim, and J. Kim (2008). Angew. Chem. Int. Ed. Engl. 47, 685–688.CrossRefGoogle Scholar
  45. 45.
    H. J. Kim, M. R. Song, S. Y. Lee, J. Young, L. Shim, and S. Lee (2008). Eur. J. Inorg. Chem. 3532–3539.Google Scholar
  46. 46.
    M. Jo, J. Seo, L. F. Lindoy, and S. S. Lee (2009). Dalton Trans. 6096–6098.Google Scholar
  47. 47.
    H. Ryu, K.-M. Park, M. Ikeda, Y. Habata, and S. S. Lee (2014). Inorg. Chem. 53, 4029–4038.CrossRefGoogle Scholar
  48. 48.
    I.-H. Park, H. J. Kim, and S. S. Lee (2012). CrystEngComm. 14, 4589–4595.CrossRefGoogle Scholar
  49. 49.
    Y.-C. Yang, S.-T. Lin, and C.-C. Cao (2007). J. Chin. Chem. Soc. 54, 587–594.Google Scholar
  50. 50.
    M. Munakata, L. P. Wu, T. Kuroda-Sowa, M. Maekawa, Y. Suenaga, and S. Nakagawa (1996). J. Chem. Soc. Dalton Trans. 1525–1530.Google Scholar
  51. 51.
    S. Q. Liu, H. Konaka, T. Kuroda-Sowa, Y. Suenaga, H. Ito, G. L. Ning, and M. Munakata (2004). Inorg. Chim. Acta 357, 3621–3631.CrossRefGoogle Scholar
  52. 52.
    I.-H. Park and S. S. Lee (2011). CrystEngComm. 13, 6520–6525.CrossRefGoogle Scholar
  53. 53.
    T. Röttgers and W. S. Sheldrick (2002). Z. Anorg. Allg. Chem. 628, 1305–1310.CrossRefGoogle Scholar
  54. 54.
    T. Röttgers and W. S. Sheldrick (2000). J. Solid State Chem. 152, 271–279.CrossRefGoogle Scholar
  55. 55.
    P. D. Harvey, A. Bonnot, A. Lapprand, C. Strohmann, and M. Knorr (2015). Macromol. Rapid Commun. 36 (in press).Google Scholar
  56. 56.
    X.-C. Shan, H.-B. Zhang, L. Chen, M.-Y. Wu, F.-L. Jiang, and M.-C. Hong (2013). Cryst. Growth Des. 13, 1377–1381.CrossRefGoogle Scholar
  57. 57.
    Y. Zhang, T. Wu, R. Liu, T. Dou, X. Bu, and P. Feng (2010). Cryst. Growth Des. 10, 2047–2049.CrossRefGoogle Scholar
  58. 58.
    Q. Hou, J.-H. Yu, J.-N. Xu, Q.-F. Yang, and J.-Q. Xu (2009). CrystEngComm. 11, 2452–2455.CrossRefGoogle Scholar
  59. 59.
    M. Bi, G. Li, J. Hua, Y. Liu, X. Liu, Y. Hu, Z. Shi, and S. Feng (2007). Cryst. Growth Des. 7, 2066–2070.CrossRefGoogle Scholar
  60. 60.
    T. H. Kim, K. Y. Lee, Y. W. Shin, S.-T. Moon, K.-M. Park, J. S. Kim, Y. Kang, S. S. Lee, and J. Kim (2005). Inorg. Chem. Commun. 8, 27–30.CrossRefGoogle Scholar
  61. 61.
    T. H. Kim, S. Lee, Y. Jeon, Y. W. Shin, and J. Kim (2013). Inorg. Chem. Commun. 33, 114–117.CrossRefGoogle Scholar
  62. 62.
    T. H. Kim, H. Yang, G. Park, K. Y. Lee, and J. Kim (2010). Chem. Asian J. 5, 252–255.CrossRefGoogle Scholar
  63. 63.
    G. Park, H. Yang, T. H. Kim, and J. Kim (2011). Inorg. Chem. 50, 961–968.CrossRefGoogle Scholar
  64. 64.
    L. Carlucci, G. Ciani, D. M. Proserpio, T. G. Mitina, and V. A. Blatov (2014). Chem. Rev. 114, 7557–7580.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Département de ChimieUniversité de SherbrookeSherbrookeCanada
  2. 2.Institut UTINAM, UMR CNRS 6213Université de Franche-ComtéBesançonFrance

Personalised recommendations