Skip to main content
Log in

Infra-red, NMR Spectroscopy and Transport Properties of Diphosphate NaAlP2O7

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The sodium aluminum diphosphate compound has been synthesized by the classic ceramic method and characterized by X-ray diffraction technique, IR, 31P NMR, 23Na NMR and impedance spectroscopy. It crystallizes in monoclinic space group P21/c . The MAS-NMR spectra showed two and one isotropic resonances relatives to 31P and 23Na, respectively, revealing the existence of two phosphorus and one sodium environments in the structure. The electrical properties of this compound have been measured in the temperature range from 523 to 673 K and the frequency range from 209 Hz to 5 MHz. The Nyquist plots are fitted to an equivalent circuit modeled by a combination series of two parallel (R//C) and (R//CPE). Impedance measurements show NaAlP2O7 an ionic conductor being the conductivity 1.16 × 10−5 Ωcm−1 at 613 K and Ea is 0.95 eV. The conductivity provide nearly the same activation energies for electrical relaxation of mobile ions revealing that transport properties in this material appear to be due to an ionic hopping mechanism dominated by the motion of the Na+ ions along [101] tunnels direction presented in the structure of the investigated material. The peak positions ωp of M″ spectra shift toward higher frequencies with increase in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Imai, Y. Kamiya, T Okuhara (2007). J. Catal. 251, 195.

  2. M. Baril, H. Assaaoudi, J. A. Kozinski, and I. S, Butler (2007). Inorg. Chim. Acta. 360, 3155.

  3. C. Parada, J. Perles, R. Saez-Puche, C. Ruiz-Valero, and N. Snejko (2003). Chem. Mater. 15, 3347.

  4. S. Seyyidoglu, M. Ozenbas, N. Yazici, A. Yilmaz (2007). J. Mater. Sci. 42, 6453.

  5. A. B. Rhaiem, S. Chouaib, K. Guidara (2010). Ionics. 16, 455.

  6. M. Gabelica-Robert, M. Goreaud, P. Labbe, B. Raveau (1982). J. Solid State Chem. 45, 389.

  7. J. P. Gamondes, F. d’Yvoire, A. Boulle (1971). C. R. Acad. Sci. 49, 272.

  8. I. Grunze, H. Grunze, Z. Anorg (1984). Allg. Chem. 512, 39.

  9. D. Riou, N. Nguyen, and R. Benloucif (1990). Mater. Res. Bull. 25, 1363.

    Article  CAS  Google Scholar 

  10. S. Nasri, M. Megdiche, K. Guidara, M. Gargouri (2013). Ionics. 10, 969.

  11. H. Nam Ng, C. Calvo (1973). Can. J. Chem. 51, 2613.

  12. S. L. Wang, P. G. Wang, Y. P. Nieh (1990). J. Appl. Cryst. 23, 520.

  13. D. Riou, N. Nguyen, R. Benloucif, B. Baveau (1990). Mater. Res. Bull. 25, 1363.

  14. A. Leclaire, A. Benmoussa, N. M. Borel, A. Grandin, B. Raveau (1988). J. Solid State Chem. 77, 299.

  15. A. Hamady, M. F. Zid, T. Jouini (1994). J. Solid State Chem. 113, 120.

  16. A. Hamady, T. Jouini (1996). Acta. Cryst. C 52, 2949.

  17. T. Shao-long, L. Yuan-Ying, Y. Yan-sheng (1997). J. Phys. Chem. Solids. 58, 957.

  18. J. Alkemper, H. Paulus, H. Fuess (1994). Z. Kristallogr. 209, 616.

  19. D. Massiot, H. Theile, and A. Germanius (1994). Bruker Rep. 43, 140.

    Google Scholar 

  20. M. Serghini Idrissi, L. Rghioui, R. Nejjar, L. Benarafa, M. Saidi Idrissi, A. Lorriaux, F. Wallart (2004). Spectrochim. Acta Part A. 60, 2043.

  21. N. Khay, A. Ennaciri, M. Harcharras (2001). Vib. Spectrosc. 27, 119.

  22. N. Khay, A. Ennaciri (2001). J. Alloys. Compd. 323, 800.

  23. N. Khay, A. Ennaciri, A. Rulmont (2001). J. Raman Spectrosc. 32, 1052.

  24. D. Massiot, H. Theile, A. Germanius (1994). Bruker Rep. 140, 43.

  25. F. Hlel, S. Kamoun, K. Guidara (1994). Z. Naturforsch. 61(2006), 375.

  26. H. Mahamoud, B. Louati, F. Hlel, K. Guidara (2011). J Alloys Compd. 509, 6083.

  27. S. Chatterjee, P. K. Mahapatra, R. N. P. Choudhary, and A. K. Thakur (2004). Phys. Status Solidi A 201, 588.

    Article  CAS  Google Scholar 

  28. H. Rahmouni, R. Jemai, N. Kallel, A. Selmi, K Khirouni (2010). J. Alloys Compd. 497, 1.

  29. S. Nasri, M. Megdiche, K. Guidara, M Gargouri (2013). Ionics. 10, 927.

  30. N. F. Mott and E. A. Davis Electronic Processes in Non-crystalline Materials, 2nd ed (Clarendon, Oxford, 1979). 225.

    Google Scholar 

  31. S. R. Elliott (1987). Adv. Phys. 36, 135.

  32. B. V. R. Chowdari, R. Gopalakrishnan (1987). Solid State Ionics 23, 225.

  33. S. Ghosh, A Ghosh (2002). Solid State Ionics 149, 67.

  34. A. Oueslati, F. Hlel, K. Guidara, M Gargouri (2010). J. Alloys. Compd. 492, 508.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ben Taher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Taher, Y., Hajji, R., Oueslati, A. et al. Infra-red, NMR Spectroscopy and Transport Properties of Diphosphate NaAlP2O7 . J Clust Sci 26, 1279–1294 (2015). https://doi.org/10.1007/s10876-014-0812-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0812-3

Keywords

Navigation