Skip to main content
Log in

Facile Synthesis of Quasi Spherical ZnO Nanoparticles with Excellent Photocatalytic Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this article, we report on the synthesis, characterization and photocatalytic activity of quasi spherical ZnO nanoparticles obtained by an egg white assisted facile sol–gel type wet method. The material was characterized for its structural, textural and optical properties. The hexagonal wurtzite crystalline structure of ZnO with high phase purity was confirmed by the X-ray diffraction analysis. The mesoporous texture generated from the inter-agglomeration of ZnO nanoparticles was clearly shown in the transmission electron microscopy (TEM) images. The N2 sorption analysis indicated a specific surface area of 18 m2/g, with monomodal mesoporosity. The optical studies had shown the decreased optical band gap (3.28 eV) of the sample with the existence of a number of crystal defects, especially oxygen vacancies in the sample. The aquatic dye pollutants were effectively degraded under UV irradiation over the ZnO nano photocatalysts. They were also found to be reusable up to five consecutive runs without loss in catalytic activity, indicating their high photostability against photocorrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. A. Khayyat, M. Abaker, A. Umar, M. O. Alkattan, N. D. Alharbi, and S. Baskoutas (2012). J. Nanosci. Nanotechnol. 12, 8453.

    Article  CAS  Google Scholar 

  2. Z. L. Wang (2008). ACS Nano 2, 1987.

    Article  CAS  Google Scholar 

  3. A. Belaidi, Th Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M-Ch Lux-Steiner, and S. Gavrilov (2009). Sol. Energy Mater. Sol. Cells 93, 1033.

    Article  CAS  Google Scholar 

  4. Q. Zhang, C. Xie, S. Zhang, A. Wang, B. Zhu, L. Wang, et al. (2005). Sens Actuators B 110, 370.

    Article  CAS  Google Scholar 

  5. S. Z. Kang, T. Wu, X. Li, and J. Mu (2010). Colloids Surf. A. Eng. Aspects 369, 268.

    Article  CAS  Google Scholar 

  6. T. Aoki, Y. Hatanaka, and D. C. Look (2000). Appl. Phys. Lett. 76, 3257.

    Article  CAS  Google Scholar 

  7. D. Qian, J. Z. Jiang, and P. L. Hansen (2003). Chem. Commun. 9, 1078.

    Article  Google Scholar 

  8. K. Vignesh, A. Suganthi, M. Rajarajan, and S. A. Sara (2012). Powder Technol. 224, 331.

    Article  CAS  Google Scholar 

  9. J. L. Yang, S. J. An, W. I. Park, G. Y. Yi, and W. Choi (2004). Adv. Mater. 16, 1661.

    Article  CAS  Google Scholar 

  10. L. Armelao, G. Bottaro, M. Pascolini, M. Sessolo, E. Tondello, M. Bettinelli, and A. Speghini (2008). J. Phys. Chem. C 112, 4049.

    Article  CAS  Google Scholar 

  11. L. Y. Yang, S. Y. Dong, J. H. Sun, J. L. Feng, Q. H. Wu, and S. P. Sun (2010). J. Hazard. Mater. 179, 438.

    Article  CAS  Google Scholar 

  12. S. A. Studenikin, N. Golego, and M. Cocivera (2000). J Appl Phys 87, 2413.

    Article  CAS  Google Scholar 

  13. Z. W. Pan, Z. R. Dai, and Z. L. Wang (2001). Science 291, 1947.

    Article  CAS  Google Scholar 

  14. P. X. Gao and Z. L. Wang (2004). Appl. Phys. Lett. 84, 2883.

    Article  CAS  Google Scholar 

  15. Y. Liu, H. Lv, S. Li, X. Xing, and G. Xi (2012). Dyes Pigm. 95, 443.

    Article  CAS  Google Scholar 

  16. M. Zareie, A. Gholami, M. Bahrami, A. H. Rezaei, and M. H. Keshavarz (2013). Mater Lett. 91, 255.

    Article  CAS  Google Scholar 

  17. M. Pudukudy, A. Hetieqa, and Z. Yaakob (2014). Appl. Surf. Sci. doi:10.1016/j.apsusc.2014.07.050.

  18. T. Ghoshal, S. Kar, and S. Chaudhuri (2007). Cryst. Growth Des. 7, 136.

    Article  CAS  Google Scholar 

  19. M. Bitenc, P. Podbrscek, Z. C. Orel, M. A. Cleveland, J. A. Paramo, R. M. Peters, and Y. M. Strzhemechny (2009). Cryst. Growth Des. 9, 997.

    Article  CAS  Google Scholar 

  20. D. Kim and Y. D. Huh (2011). Mater. Lett. 65, 2100.

    Article  CAS  Google Scholar 

  21. M. S. Mohajerani, M. Mazloumi, A. Lak, A. Kajbafvala, S. Zanganeh, and S. K. Sadrnezhaad (2008). J. Cryst. Growth 310, 3621.

    Article  CAS  Google Scholar 

  22. Y. Zhang, W. F. Zhang, and H. W. Zheng (2007). Scripta Mater. 57, 313.

    Article  CAS  Google Scholar 

  23. Z. Liu, Z. Jin, W. Li, and J. Qiu (2005). Mater. Lett. 59, 3620.

    Article  CAS  Google Scholar 

  24. D. Chen, X. Jiao, and G. Cheng (2000). Solid State Commun. 113, 363.

    Article  Google Scholar 

  25. V. Bansal, P. Poddar, A. Ahmad, and M. Sastry (2006). J. Am. Chem. Soc. 128, 11958.

    Article  CAS  Google Scholar 

  26. Y. L. Zou, Y. Li, J. G. Li, and W. J. Xie (2012). Chem. Pap. 66, 278.

    Article  CAS  Google Scholar 

  27. D. V. Vadehra, K. R. Nath, and R. Forsythe (1973). CRC Crit. Rev. Food Technol. 4, 193.

    Article  CAS  Google Scholar 

  28. S. Dhara and P. Bhargava (2001). J. Am. Chem. Soc. 84, 3048.

    CAS  Google Scholar 

  29. F. Nouroozi and F. Farzaneh (2011). J. Braz. Chem. Soc. 22, 484.

    Article  CAS  Google Scholar 

  30. P. Thangaraj, J. Rajan, S. Durai, S. Kumar, A. R. Phanic, and G. Neri (2011). Vaccum 86, 140.

    Article  CAS  Google Scholar 

  31. M. Shoeb, B. R. Singh, J. A Khan, W. Khan, B. N. Singh, H. B. Singh, and A. H. Naqv (2013). Adv. Nat. Sci. 4, 035015.

  32. N. Daneshvar, S. Aber, M. S. Seyed Dorraji, A. R. Khatae, and M. H. Rasoulifard (2007). Sep. Purific. Technol. 58, 91.

  33. M. Pudukudy and Z. Yaakob (2013). Superlattices Microstruct. 63, 47.

    Article  CAS  Google Scholar 

  34. Z. Zhu, D. Yang, and H. Liu (2011). Adv. Powder Technol. 22, 493.

    Article  Google Scholar 

  35. M. Pudukudy, Z. Yaakob, B. Narayanan, A. Gopalakrishnan, and S. M. Tasirin (2013). Superlattices Microstruct. 64, 15.

    Article  CAS  Google Scholar 

  36. L. Sun, R. Shao, Z. Chen, L. Tang, Y. Dai, and J. Ding (2012). Appl. Surf. Sci. 258, 5455.

    Article  CAS  Google Scholar 

  37. Q. F. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Z. Cao (2008). Angew. Chem. Int. Ed. 47, 2402.

    Article  CAS  Google Scholar 

  38. T. Prakash, R. Jayaprakash, D. S. Raja, S. Kumar, N. Donatoc, D. Spadarod, and G. Neri (2013). Sens. Actuators B 176, 560.

    Article  CAS  Google Scholar 

  39. L. J. Song, Z. Shuo, L. Z. Quan, Z. K. Jun, C. J. Kang, and Q. J.-Hao (2012) Trans. Nonferrous Met. Soc. China 22, 2459.

  40. Q. Dong, H. Su, J. Xu, D. Zhang, and R. Wang (2007). Mater. Lett. 61, 2714.

    Article  CAS  Google Scholar 

  41. M. Hedstrom, F. Plieva, I. Y. Galaev, and B. Mattiasson (2008). Anal. Bioanal. Chem. 390, 907.

    Article  Google Scholar 

  42. A. J. Wooten, D. J. Werder, D. J. Williams, J. L. Casson, and J. A. Hollingsworth (2009). J Am Chem Soc 131, 16177.

    Article  CAS  Google Scholar 

  43. J. H. Sun, S. Y. Dong, J. L. Feng, X.-J. Yin, and X. C. Zhao (2011). J. Mol. Catal. A 335, 145.

    Article  CAS  Google Scholar 

  44. A. J. Reddy, M. K. Kokila, H. Nagabhushan, J. L. Rao, C. Shivakumar, B. M. Nagabhushan, and R. P. S. Chakradhar (2011). Spectrochim. Acta A 81, 53.

    Article  CAS  Google Scholar 

  45. S. Baskoutas and G. Bester (2010). J. Phys. Chem. C 114, 9301.

    Article  CAS  Google Scholar 

  46. S. Baskoutas and G. Bester (2011). J. Phys. Chem. C 115, 15862.

    Article  CAS  Google Scholar 

  47. Z. Huang, D. Yan, M. Yang, X. Liao, Y. Kang, G. Yin, and Y. Yao (2008). J. Colloid Interface Sci. 325, 356.

    Article  CAS  Google Scholar 

  48. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc (2005). J. Appl. Phys. 98, 041301.

    Article  Google Scholar 

  49. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade (1996). J. Appl. Phys. 79, 7983.

    Article  CAS  Google Scholar 

  50. M. Pudukudy and Z. Yaakob (2014). Solid State Sci. 30, 78.

    Article  CAS  Google Scholar 

  51. J. Zhou, F. Zhao, Y. Wang, Y. Zhang, and L. Yang (2007). J. Lumin. 122–123, 195.

    Article  Google Scholar 

  52. N. Kiomarsipourn and R. S. Razavi (2013). Ceram. Int. 39, 813.

    Article  Google Scholar 

  53. G. Patrinoiu, M. Tudose, J. M. C. Moreno, R. Birjega, P. Budrugea, R. Ene, and O. Carp (2012). J. Solid State Chem. 186, 17.

    Article  CAS  Google Scholar 

  54. I. Fatimah, S. Wang, and D. Wulandari (2011). Appl. Clay Sci. 53, 553.

    Article  CAS  Google Scholar 

  55. A. Kajbafval, H. Ghorbani, A. Paravar, J. P. Samberg, E. Kajbafvala, and S. K. Sadrnezhaad (2012). Superlattices Microstruct. 51, 512.

    Article  Google Scholar 

  56. Y. J. Xu, Y. B. Zhuang, and X. Z. Fu (2010). J. Phys. Chem. C 114, 2669.

    Article  CAS  Google Scholar 

  57. K. Thongsuriwong, P. Amornpitoksuk, and S. Suwanboon (2013). Adv. Powd. Tech. 24, 275.

    Article  CAS  Google Scholar 

  58. T. Warang, N. Patel, A. Santini, N. Bazzanella, and A. Kale (2012). Appl. Catal. A 423–424, 21.

    Article  Google Scholar 

  59. M. Khatamian, A. A. Khandar, B. Divband, M. Haghighi, and S. Ebrahimiaslc (2012). J. Mol. Catal. A 365, 120.

    Article  CAS  Google Scholar 

  60. M. Pudukudy and Z. Yaakob (2014). Appl. Surf. Sci. 292, 520.

    Article  CAS  Google Scholar 

  61. M. Pudukudy, Z. Yaakob, R. Rajendran, and T. Kandaramath (2014). React. Kinet. Mech. Catal. 112, 527.

    Article  CAS  Google Scholar 

  62. Q. Xiao and L. Ouyang (2009). J. Alloys Compd. 479, L4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Yayasan Sime Darby (YSD), Universiti Kebangsaan Malaysia, under grant PKT/2012, Teknologi Sisa Sifar (331326006). The authors would like to acknowledge FST and CRIM for the material analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Pudukudy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pudukudy, M., Yaakob, Z. Facile Synthesis of Quasi Spherical ZnO Nanoparticles with Excellent Photocatalytic Activity. J Clust Sci 26, 1187–1201 (2015). https://doi.org/10.1007/s10876-014-0806-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0806-1

Keywords

Navigation