Skip to main content
Log in

Synthesis and Crystal Structure of Potassium–Nickel Heteropoly Hexatungstonickelate (II) K3Ni0,5[Ni(OH)6W6O18]·12H2O with Anderson-Type Anion and Potassium–Nickel Paratungstate B K6Ni2[W12O40(OH)2]·22H2O

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Conditions necessary for the formation of potassium–nickel paratungstate B K6Ni2[W12O40(OH)2]·22H2O (1) and potassium–nickel heteropoly hexatungstonickelate (II) with Anderson type anion K3Ni0,5[Ni(OH)6W6O18]·12H2O (2) in Ni(NO3)2–K2WO4–HNO3–H2O solution, acidified up to Z = ν(H+)/ν(WO4 2−) = 1,00, were established. The synthesized salts 1 and 2 were examined using chemical analysis, X-ray single crystal analysis and FTIR spectroscopy. The compound 1 crystallizes in the triclinic system, space group \( \bar{P} \), Mr = 3,628.59, a = 10.617(3) Å, b = 11.818(2) Å, c = 13.454(3) Å, α = 68.034(18)°, β = 76.96(2)°, γ = 63.53(2)°, V = 1,398.0(5); the compound 2 crystallizes in the monoclinic system, space group P2 1 /n, Mr = 1,914.71, a = 11.2586(3) Å, b = 11.4933(6) Å, c = 26.1158(15) Å, α = 100.938(4)°, V = 3,318.0(3) Å3. In the structure 1 paratungstate B anion [W12O40(OH)2]10− is centrosymmetric and occupies the center [[1/2,0,1/2]], while 2D layers consist of isopolyanion and potassium polyhedra KOn (n = 8, 10), forming the 3D structure through NiO6 octahedra. The structure 2 comprises Anderson type anions [Ni(OH)6W6O18]4−, cationic polyhedra NiO6, KO8 and uncoordinated H2O molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Perloff (1970). Inorg. Chem. 9, 2228.

    Article  CAS  Google Scholar 

  2. R. Cao, S. Liu, L. Xie, Y. Pan, J. Cao, and Y. Liu (2008). Inorg. Chim. Acta 361, 2013.

    Article  CAS  Google Scholar 

  3. D. Drewes, B. Krebs, and Z. Anorg (2005). Allg. Chem. 631, 2591.

    Article  CAS  Google Scholar 

  4. S. Golhen, L. Ouahab, D. Grandjean, and P. Molinie (1998). Inorg. Chem. 37, 1499.

    Article  CAS  Google Scholar 

  5. L. Ouahab, S. Golhen, Yu Yoshida, and G. Saito (2003). J. Cluster Sci. 14, 193.

    Article  CAS  Google Scholar 

  6. A. M. Khenkin and R. Neumann (2002). Adv. Synth. Catal. 344, 1017.

    Article  CAS  Google Scholar 

  7. C. Wu, X. Lin, R. Yu, W. Yang, C. Lu, and H. Zhuang (2001). Sci. China 44, 49.

    Article  CAS  Google Scholar 

  8. K. C. Dey and V. Sharma (2008). E-Jour. Chem. 5, 1021.

    Article  CAS  Google Scholar 

  9. G. M. Rozantsev, S. V. Radio, N. I. Gumerova, V. N. Baumer, and O. V. Shishkin (2009). J. Struct. Chem. 50, 296.

    Article  CAS  Google Scholar 

  10. A. V. Oreshkina, G. Z. Kaziev, and A. V. Steblevskii (2011). Russ. J. Inorg. Chem. 56, 181.

    Article  CAS  Google Scholar 

  11. U. Lee (2006). Acta Cryst. Sec. E. E63, i5.

    Google Scholar 

  12. U. Lee, H.-C. Joo, and J.-S. Kwon (2002). Acta Cryst. Sec. E58, i6.

    Article  Google Scholar 

  13. A. Ya Moroz, A. I. Gruba, and M. N. Zayats (1987). Zhurn. Neorg. Khim. 32, 927.

    Google Scholar 

  14. W.-B. Yang, C.-Z. Lu, H.-H. Zhang, and Z. Anorg (2003). Allg. Chem. 629, 2046.

    Article  CAS  Google Scholar 

  15. C.-Y. Sun, S.-X. Liu, L.-H. Xie, C.-L. Wang, B. Gao, C.-D. Zhang, and Z.-M. Su (2006). J. Solid State Chem. 179, 2093.

    Article  CAS  Google Scholar 

  16. C. Gimenez-Saiz, J. R. Galan-Mascaros, S. Triki, E. Coronado, and L. Ouahab (1995). Inorg. Chem. 34, 524.

    Article  CAS  Google Scholar 

  17. P. P. Korostelev Preparation of Solutions for Chemical-Analytical Studies [in Russian] (Nauka, Moscow, 1964), p. 400.

    Google Scholar 

  18. V. F. Gillebrand, G. E. Lendel, G. A. Brite, and D. I. Gofman Practicum in Inorganic Analysis, [in Russian] (Khimiya, Moscow, 1966), p. 1112.

    Google Scholar 

  19. G. Sharlo Methods in Analytical Chemistry. Quantitative Analysis of Inorganic Compounds [in Russian] (Khimya, Leningrad, 1965), p. 975.

    Google Scholar 

  20. G. M. Sheldrick (2008). Acta Cryst. Sec. A. 64, 112.

    Article  CAS  Google Scholar 

  21. L. J. Farrugia (1999). J. Appl. Cryst. 32, 837.

    Article  CAS  Google Scholar 

  22. Yu V Kholin Quantitative physico–chemical analysis of complex formation in solutions and on the surface of the chemically modified silica: models, mathematical methods and their applications [in Russian] (Folio, Kharkov, 2000).

    Google Scholar 

  23. S.A. Merny, D.S. Konyaev, Yu.V. Kholin. CLINP 2.1, A program for computation of stability constants and physicochemical parameters of complex compounds in solutions, extractional and sorptional systems on the base of composition-property dependencies. Available online at: http://www-chemo.univer.kharkov.ua/kholin/clinp.html.

  24. M. T. Pope Heteropoly and Isopoly Oxometallates (Springer, Berlin, 1983), p. 285.

    Book  Google Scholar 

  25. A. F. Redkin and G. V. Bondarenko (2010). J. Solution Chem. 39, 1549.

    Article  CAS  Google Scholar 

  26. G. M. Rozantsev, S. V. Radio, and N. I. Gumerova (2008). Pol. J. Chem. 82, 2067.

    CAS  Google Scholar 

  27. J. Wang, Q. Ren, and J. Zhao (2008). J. Coord. Chem. 61, 192.

    Article  Google Scholar 

  28. D. Ortiz-Acosta, R. K. Feller, B. L. Scott, and R. E. Del Sesto (2012). J. Chem. Crystallogr. 42, 651.

    Article  CAS  Google Scholar 

  29. A. L. Nolan, C. C. Allen, R. C. Burns, G. A. Lawrance, E. N. Wilkes, and T. W. Hambley (1999). Aust. J. Chem. 52, 955.

    Article  CAS  Google Scholar 

  30. S. V. Radio, G. M. Rozantsev, V. N. Baumer, and O. V. Shishkin (2011). J. Struct. Chem. 52, 111.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was financially supported by the Ministry of Education and Science of Ukraine, Grant ID 0113U001530.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadiia I. Gumerova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumerova, N.I., Kasyanova, K.V., Rozantsev, G.M. et al. Synthesis and Crystal Structure of Potassium–Nickel Heteropoly Hexatungstonickelate (II) K3Ni0,5[Ni(OH)6W6O18]·12H2O with Anderson-Type Anion and Potassium–Nickel Paratungstate B K6Ni2[W12O40(OH)2]·22H2O. J Clust Sci 26, 1171–1186 (2015). https://doi.org/10.1007/s10876-014-0805-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0805-2

Keywords

Navigation