Skip to main content
Log in

Influence of the Diphosphine Coordinated to Molybdenum and Tungsten Triangular M3S4 Cluster Hydrides in the Catalytic Hydrodefluorination of Pentafluoropyridine

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Hydrido molybdenum and tungsten(IV) cluster cations of formula [M3S4H3(dppe)3]+ (dppe = 1,2-(bis)dimethylphosphinoethane), [Mo-1]+ (M = Mo) and [W-1]+ (M = W), have been isolated by reacting their halide precursors with borohydride. Synthetic procedures have been optimized by appropriate choice of the solvent. Furthermore, [M3S4F3(dppe)3]+ fluorido cluster complexes, [Mo-2]+ (M = Mo) and [W-2]+ (M = W) have been prepared through halogen substitution reactions using an excess of cesium fluoride. The structures of [Mo-1]+ and [Mo-2]+ have been determined by single crystal X-ray diffraction experiments. These [M-1]+ hydrido and [M-2]+ fluorido clusters have been used as catalysts and precatalysts, respectively, in the catalytic hydrodefluorination (HDF) of pentafluoropyridine using HSiMe2Ph as hydrogen source. The reaction proceeds under microwave and reflux conditions to selectively afford 2,3,5,6-tetrafluoropyridine. The [W-1]+ hydrido cluster is the most efficient catalyst with turnover numbers of 124, while the [Mo-1]+ hydrido cluster reacts faster. Fluorido [Mo-2]+ and [W-2]+ complexes provide lower yields and turnover numbers. In general, the molybdenum and tungsten [M-1]+ and [M-2]+ diphosphino complexes are more efficient than their dmpe (1,2-(bis)dimethylphosphinoethano) analogues and activate pentafluoropyridine under softer conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. H. Amii and K. Uneyama (2009). Chem. Rev. 109, 2119.

    Article  CAS  Google Scholar 

  2. A. Nova, R. Mas-Ballesté, and A. Lledós (2011). Organometallics 31, 1245.

    Article  Google Scholar 

  3. E. Clot, O. Eisenstein, N. Jasim, S. A. Macgregor, J. E. McGrady, and R. N. Perutz (2011). Acc. Chem. Res. 44, 333.

    Article  CAS  Google Scholar 

  4. X. Ribas C-H and C-X Bond Functionalization: Transition Metal Mediation (Cambridge, UK, RSC, 2013), p. 471.

    Book  Google Scholar 

  5. M. F. Kuehnel, D. Lentz, and T. Braun (2013). Angew. Chem. 52, 3328.

    Article  Google Scholar 

  6. B. M. Kraft, R. J. Lachicotte, and W. D. Jones (2000). J. Am. Chem. Soc. 122, 8559.

    Article  CAS  Google Scholar 

  7. E. Clot, C. Mégret, B. M. Kraft, O. Eisenstein, and W. D. Jones (2004). J. Am. Chem. Soc. 126, 5647.

    Article  CAS  Google Scholar 

  8. B. M. Kraft and W. D. Jones (2002). J. Am. Chem. Soc. 124, 8681.

    Article  CAS  Google Scholar 

  9. B. M. Kraft, R. J. Lachicotte, and W. D. Jones (2001). J. Am. Chem. Soc. 123, 10973.

    Article  CAS  Google Scholar 

  10. U. Jäger-Fiedler, M. Klahn, P. Arndt, W. Baumann, A. Spannenberg, V. V. Burlakov, and U. Rosenthal (2007). J. Mol. Cat. A: Chemical 261, 184.

    Article  Google Scholar 

  11. R. D. Rieth, W. W. Brennessel, and W. D. Jones (2007). Eur. J. Inorg. Chem. 2007, 2839.

    Article  Google Scholar 

  12. S. Yow, S. J. Gates, A. J. P. White, and M. R. Crimmin (2012). Angew. Chem. Int. Ed. 51, 12559.

    Article  CAS  Google Scholar 

  13. M. Klahn and U. Rosenthal (2012). Organometallics 31, 1235.

    Article  CAS  Google Scholar 

  14. M. F. Kuhnel and D. Lentz (2010). Angew. Chem. Int. Ed. 49, 2933.

    Article  Google Scholar 

  15. M. F. Kuehnel, P. Holstein, M. Kliche, J. Kruger, S. Matthies, D. Nitsch, J. Schutt, M. Sparenberg, and D. Lentz (2012). Chem. Eur. J. 18, 10701.

    Article  CAS  Google Scholar 

  16. J. Vela, J. M. Smith, Y. Yu, N. A. Ketterer, C. J. Flaschenriem, R. J. Lachicotte, and P. L. Holland (2005). J. Am. Chem. Soc. 127, 7857.

    Article  CAS  Google Scholar 

  17. S. P. Reade, M. F. Mahon, and M. K. Whittlesey (2009). J. Am. Chem. Soc. 131, 1847.

    Article  CAS  Google Scholar 

  18. J. A. Panetier, S. A. Macgregor, and M. K. Whittlesey (2011). Angew. Chem. Int. Ed. 50, 2783.

    Article  CAS  Google Scholar 

  19. S. A. Macgregor, D. McKay, J. A. Panetier, and M. K. Whittlesey (2013). Dalton Trans. 42, 7386.

    Article  CAS  Google Scholar 

  20. L. M. Guard, A. E. W. Ledger, S. P. Reade, C. E. Ellul, M. F. Mahon, and M. K. Whittlesey (2011). J. Organomet. Chem. 696, 780.

    Article  CAS  Google Scholar 

  21. L. Zámostná, M. Ahrens, and T. Braun (2013). J. Fluorine Chem. 155, 132.

    Article  Google Scholar 

  22. T. F. Beltran, M. Feliz, R. Llusar, J. A. Mata, and V. S. Safont (2011). Organometallics 30, 290.

    Article  CAS  Google Scholar 

  23. F. Estevan, M. Feliz, R. Llusar, J. A. Mata, and S. Uriel (2001). Polyhedron 20, 527.

    Article  CAS  Google Scholar 

  24. CrysAlisPro (Agilent Technologies, Santa Clara, CA, 2012).

  25. R. C. Clark and J. S. Reid (1995). Acta Crystallogr. Sect. A 51, 887.

    Article  Google Scholar 

  26. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Cryst. 42, 339.

    Article  CAS  Google Scholar 

  27. G. M. Sheldrick (2008). Acta Crystallogr. Sect. A 64, 112.

    Article  CAS  Google Scholar 

  28. F. A. Cotton, R. Llusar, and C. T. Eagle (1989). J. Am. Chem. Soc. 111, 4332.

    Article  CAS  Google Scholar 

  29. A. G. Algarra, M. G. Basallote, M. J. Fernandez-Trujillo, M. Feliz, E. Guillamon, R. Llusar, I. Sorribes, and C. Vicent (2010). Inorg. Chem. 49, 5935.

    Article  CAS  Google Scholar 

  30. M. Minato and T. Ito (2008). Coord. Chem. Rev. 252, 1613.

    Article  CAS  Google Scholar 

  31. J. Andrés, M. Feliz, J. Fraxedas, V. Hernández, J. T. López-Navarrete, R. Llusar, G. Sauthier, F. R. Sensato, B. Silvi, C. Bo, and J. M. Campanera (2007). Inorg. Chem. 46, 2159.

    Article  Google Scholar 

  32. R. Llusar and S. Uriel (2003). Eur. J. Inorg. Chem. 2003, 1271.

    Article  Google Scholar 

  33. Y. V. Mironov, S. S. Yarovoi, S. F. Solodovnikov, and V. E. Fedorov (2003). J. Mol. Struct. 656, 195.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Spanish Ministerio de Economía y Competitividad (Grant CTQ2011-23157), Universitat Jaume I (Research Project P1·1B2013-19) and Generalitat Valenciana (ACOMP/2013/215 and Prometeo/2009/053) is gratefully acknowledged. The authors also thank the Servei Central d’Instrumentació Científica (SCIC) of the University Jaume I for providing us with the mass spectrometry, NMR and X-ray facilities. C.A. thanks the Spanish Ministerio de Economía y Competitividad for a predoctoral fellowship (FPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Llusar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfonso, C., Beltrán, T.F., Feliz, M. et al. Influence of the Diphosphine Coordinated to Molybdenum and Tungsten Triangular M3S4 Cluster Hydrides in the Catalytic Hydrodefluorination of Pentafluoropyridine. J Clust Sci 26, 199–209 (2015). https://doi.org/10.1007/s10876-014-0733-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0733-1

Keywords

Navigation