Skip to main content

Advertisement

Log in

Effect of Nanosilver on Seed Germination and Seedling Growth in Pennisetum glaucum

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We have investigated the phytotoxicity of silver nanoparticles (AgNPs) on an important crop plant Pennisetum glaucum. The silver nanoparticles (AgNPs) were synthesized using aqueous leaf extracts of Cassia auriculata (Family: Leguminosae) by microwave irradiation. The synthesized silver nanoparticles were characterized by UV–Vis spectroscopy for their absorbance pattern, X-ray diffraction analysis revealed crystalline nature of the particles with face centered cubic geometry with mean particle size 13 nm and transmission electron microscopy to determine the shape of the nanoparticles. The seeds treated with synthesized AgNPs showed better germination but the seedling growth of tested specie was affected by exposure to concentrations of AgNPs. Silver nanoparticles may hold significant applications in agriculture and gardening by selectively inhibiting harmful fungi and bacteria presents on seeds and could provide as an alternative source of fertilizer that may improve sustainable agriculture. Thus, nano treated seeds can be used to lower the environmental impacts of chemical fungicides and reduce the cost of agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J. Kasthuri, S. Veerapandian, and N. Rajendiran (2009). Colloid Surface B 68, 55.

    Article  CAS  Google Scholar 

  2. M. Holman (2007). Presented at the ICON nanomaterial environmental health and safety research needs assessment, January 9, Bethesda, MD, USA.

  3. J. Dunn (2004). http://www.etcgroup.org/documents/ETCDOTFarm2004.pdf”.

  4. R.F. Service (2008). Science 322, 1779.

    Article  Google Scholar 

  5. T. K. Darlington, A. M. Neigh, M. T. Spencer, O. T. Nguyen, and S. J. Oldenburg (2009). Environ. Toxicol. Chem 28, 1191.

    Article  CAS  Google Scholar 

  6. D. Lin and B. Xing (2007). Environ. poll. 150, 243.

    Article  CAS  Google Scholar 

  7. M. R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou, and P. Biswas (2006). Environ. Sci. Technol. 40, 4336.

    Article  CAS  Google Scholar 

  8. G. Brumfield (2003). Nature 424, 246.

    Article  Google Scholar 

  9. A. Nel, T. Xia, L. Madler, and N. Li (2006). Science 311, 622.

    Article  CAS  Google Scholar 

  10. M. Holsapple, W. Farland, T. Landry, N. Monteiro-Riviere, J. Carter, N. Walker, and K. Thomas (2005). Toxicol. Sci. 88, 412.

    Article  Google Scholar 

  11. M. N. V. Prasad (2004). 2nd ed. Springer, New York, NY, USA.

  12. S. A. Blaser, M. Scheringer, M. MacLeod, and K. Hungerbuhler (2008). Sci. Total Environ. 390, 396.

    Article  CAS  Google Scholar 

  13. J. W Ma, X. Y. Lu, Y. Huang (2011). J. Biomed. Nanotech. 7, 263.

  14. A. J. Miao, K. A. Schwehr, C. Xu, S. J. Zhang, Z. P. Luo, et al. (2009). Environ. Pollut. 157, 3034.

    Article  CAS  Google Scholar 

  15. J. Kim, S. Kim, and S. Lee (2011). Nanotoxicology 5, 208.

    Article  CAS  Google Scholar 

  16. E. J. Gubbins, L. C. Batty, and J. R. Lead (2011). Environ. Pollut. 159, 1551.

    Article  CAS  Google Scholar 

  17. H. Jiang, M. Li, F. Chang, W. Li, and L. Yin (2012). Environ. Toxicol. Chem. 31, 1880.

    Article  CAS  Google Scholar 

  18. M. Di Salvatore, A. M. Carafa, and G. Carratù (2008). Chemosphere 73, 1461.

    Article  Google Scholar 

  19. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed (2006). J. Phys. Chem. B. 110, 7238.

    Article  CAS  Google Scholar 

  20. T. V. S. Sresty and K. V. M. Rao (1999). Environ. Exp. Bot. 41, 3.

    Article  CAS  Google Scholar 

  21. G. L. Jane, W. Qiang, Y. Ying, Z. Wen, G. Matt, L. Kungang, H. Ying, C. Yongsheng, K. Andrei, and M. Xingmao (2013). Nanotoxicology 7, 323.

    Article  Google Scholar 

  22. M. Kumari, A. Mukherjee, and N. Chandrasekaran (2009). Sci. Tot. Env. 407, 5243.

    Article  CAS  Google Scholar 

  23. B. Cristina, P. Ivan, and R. Kevin (2007). Biointerphases 2, MR17–MR71.

  24. B. Ravishankar, G. Sharanabasava, D. Raghunandan, G. Ravindra, and A. Venkataraman (2013). J. Clust. Sci. 24, 107.

    Article  Google Scholar 

  25. O. Munzuroglu and H. Geckil (2002). Arch. Environ. Contam. Toxicol. 43, 203.

    Article  CAS  Google Scholar 

  26. T. J. Brunner, P. Wick, P. Manser, P. Spohn, et al. (2006). Environ. Sci. Technol. 40, 4374.

    Article  CAS  Google Scholar 

  27. H. F. Krug and P. Wick (2011). Angew. Chem. 50, 1260.

    Article  CAS  Google Scholar 

  28. W. M. Lee, Y. J. An, H. Yoon, and H. S. Kweon (2008). Environ. Toxicol. Chem. 27, 1915.

    Article  CAS  Google Scholar 

  29. M. Kumari, S. S. Khan, S. Pakrashi, A. Mukherjee, and N. Chandrasekaran (2011). J. Hazard. Mater. 190, 613.

    Article  CAS  Google Scholar 

  30. S. V. Raskar and S. L. Laware (2014). Int. J. Curr. Microbiol. Appl. Sci. 3, 467.

    CAS  Google Scholar 

  31. D. Stampoulis, S. K. Sinha, and J. C. White (2009). Environ. Sci. Technol. 43, 9473.

    Article  CAS  Google Scholar 

  32. N. Karimi, S. Minaei, M. Almassi, and A. R. Shahverdi (2012). Afr. J. Agric. Res. 7, 1863.

    Article  Google Scholar 

  33. Y. Jyothsna and U. Pathipati (2013). Environ. Sci. Pollut. Res.. doi:10.1007/s11356-013-1798-3.

    Google Scholar 

  34. L. Yang and D. J. Watts (2005). Toxicol. Lett. 158, 122.

    Article  CAS  Google Scholar 

  35. G. W. Stephen, L. Huang, J. Head, M. Ball, Y. J. Tang, and D. Chen (2014). Aerosol. Air. Qual. Res. 14, 632.

    Google Scholar 

  36. H. Mahmoodzadeh and R. Aghili (2014). J. Chem. Health. Risks. 4, 29.

    Google Scholar 

  37. M. H. Siddiqui and M. H. Al-Whaibi (2014). Saudi. J. Biol. Sci. 21, 13.

    Article  CAS  Google Scholar 

  38. M. Khodakovskaya, E. Dervishi, M. Mahmood, Y. Xu, Z. Li, and F. Watanabe (2009). ACS Nano. 3, 3221.

    Article  CAS  Google Scholar 

  39. H. Majumdar and G. U. Ahmed (2011). Int. J. ChemTech. Res. 3, 1494.

    Google Scholar 

  40. Y. S. El-Temsah and E. J. Joner (2012). Environ. Toxicol. 27, 42.

    Article  CAS  Google Scholar 

  41. J. M. Locke, J. H. Bryce, and P. C. Morris (2000). J. Exp. Bot. 51, 1843.

    Article  CAS  Google Scholar 

  42. S. Lin, J. Reppert, Q. Hu, J. S. Hunson, M. L. Reid, and T. Ratnikova (2009). Small 5, 1128.

    Article  CAS  Google Scholar 

  43. X. Li, J. Zhang, W. Xu, H. Jia, X. Wang, B. Yang, B. Zhao, B. Li, and Y. Ozaki (2003). Langmuir 19, 4285.

    Article  CAS  Google Scholar 

  44. A. Mondal, R. Basu, S. Das, and P. Nandy (2011). J. Nano. Res. 13, 4519.

    Article  CAS  Google Scholar 

  45. C. M. Rico, S. Majumdar, M. Duarte-Gardea, J. R. Peralta-Videa, and J. L. Gardea-Torresdey (2011). J. Agric. Food. Chem. 59, 3485.

    Article  CAS  Google Scholar 

  46. C. Larue, H. Khodja, N. Herlin-Boime, F. Brisset, A. M. Flank, B. Fayard, S. Chaillou, and M. Carriere (2011). J. Phys: Conf. Ser. 304, 012057.

    Google Scholar 

  47. C. Vannini, G. Domingo, E. Onelli, B. Prinsi, M. Marsoni, et al. (2013). PLoS ONE 8, 68752. doi:10.1371/journal.pone.0068752.

    Article  Google Scholar 

  48. G. Jia, et al. (2005). Technology 39, 1378.

    Article  CAS  Google Scholar 

  49. L. Yin, Y. Cheng, B. Espinasse, P. B. Colman, M. Auffan, M. Wiesner, J. Rose, J. Liu, and E. S. Bernhardt (2011). Environ. Sci. Technol. 45, 2360.

    Article  CAS  Google Scholar 

  50. C. M. Ruffini and R. Cremonini (2009). Caryologia 62, 161.

    Article  Google Scholar 

  51. S. Uhram, J. Heeju, W. Bruce, R. Jinkyu, et al. (2013). Ecotoxicol. Environ. Safety 93, 60.

    Article  Google Scholar 

  52. C. Krishnaraj, E. G. Jagan, R. Ramachandran, S. M. Abirami, N. Mohan, and P. T. Kalaichelvan (2012). Proc. Biochem. 47, 651.

    Article  CAS  Google Scholar 

  53. ATSDR (Agency for toxic substances and Disease Registry), 1990. Toxicological profile for Silver. Prepared by Clement International Corporation, under Contract 205-88-0608). U.S. Public Health Service. ATSDR/TP-90-24.

  54. D. H. Atha, H. Wang, E. J. Petersen, et al. (2012). Environ. Sci. Tech. 46, 1819.

    Article  CAS  Google Scholar 

  55. X. M. Tan, C. Lin, and B. Fugetsu (2009). Carbon 47, 3479.

    Article  CAS  Google Scholar 

  56. P. V. Asha Rani, K. M. G. Low, M. P. Hande, and S. Valiyaveettil (2009). ACS Nano 3, 279.

    Article  CAS  Google Scholar 

  57. O. Choi and Z. Hu (2008). Environ. Sci. Technol. 42, 4583.

    Article  CAS  Google Scholar 

  58. J. Liu and R. H. Hurt (2010). Envir. Sci. Technol. 44, 2169.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support of University Grants Commission (F1-17.1/2010/MANF-MUS-KAR-6091) is highly appreciated. The authors are thankful to Dr. Sreedhar Bojja, Indian Institute of Chemical Technology Hyderabad for providing TEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinath Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveen, A., Rao, S. Effect of Nanosilver on Seed Germination and Seedling Growth in Pennisetum glaucum . J Clust Sci 26, 693–701 (2015). https://doi.org/10.1007/s10876-014-0728-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0728-y

Keywords

Navigation