Skip to main content
Log in

Cluster Organic Framework Based on Er3 and Cu5 Cluster Units

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A novel cluster organic framework, Er3Cu5I4L10(H2O) (1, L = 4-pyridin-3-yl-benzonate), has been hydrothermally made and structurally characterized by single crystal X-ray diffraction. Structure analysis shows [Er3(COO)6]3+ (Er3) clusters are linked by carboxylate groups generating one dimensional wave-like chain, which further extended by Cu5I4 + (Cu5) clusters into three dimensional heterometallic cluster organic framework. From the perspective of topology, such framework defines a new (7,9)-connected net, considering Er3 and Cu5 cores as the nodes. Furthermore, the elemental analysis, powder X-ray diffraction, infrared spectra and thermogravimetric analysis are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak (1993). Nature 365, 141.

    Article  CAS  Google Scholar 

  2. B. K. Teo (2014). J. Cluster Sci. 25, 5.

    Article  CAS  Google Scholar 

  3. A. Müller, E. Beckmann, H. Bögge, M. Schmidtmann, and A. Dress (2002). Nature 41, 1162.

    Google Scholar 

  4. A. J. Tasiopoulos, A. Vinslava, W. Wernsdorfer, K. A. Abboud, and G. Christou (2004). Angew. Chem. Int. Ed. 43, 2117.

    Article  CAS  Google Scholar 

  5. X. J. Kong, Y. L. Wu, L. S. Long, L. S. Zheng, and Z. P. Zheng (2009). J. Am. Chem. Soc. 131, 6918.

    Article  CAS  Google Scholar 

  6. M. R. Bürgstein and P. W. Roesky (2000). Angew. Chem. Int. Ed. 39, 549.

    Article  Google Scholar 

  7. J. R. Lombardi and B. Davis (2002). Chem. Rev. 102, 2431.

    Article  CAS  Google Scholar 

  8. S. C. Xiang, S. M. Hu, T. L. Sheng, R. B. Fu, X. T. Wu, and X. D. Zhang (2007). J. Am. Chem. Soc. 129, 15144.

    Article  CAS  Google Scholar 

  9. X. Yang, D. Schipper, R. A. Jones, L. A. Lytwak, B. J. Holliday, and S. Huang (2013). J. Am. Chem. Soc. 135, 8468.

    Article  CAS  Google Scholar 

  10. J. B. Peng, Q. C. Zhang, X. J. Kong, Y. Z. Zheng, Y. P. Ren, L. S. Long, R. B. Huang, L. S. Zheng, and Z. Zheng (2012). J. Am. Chem. Soc. 134, 3314.

    Article  CAS  Google Scholar 

  11. J. D. Leng, J. L. Liu, and M. L. Tong (2012). Chem. Commun. 48, 5286.

    Article  CAS  Google Scholar 

  12. M. B. Zhang, J. Zhang, S. T. Zheng, and G. Y. Yang (2005). Angew. Chem. Int. Ed. 44, 1385.

    Article  CAS  Google Scholar 

  13. J. W. Cheng, J. Zhang, S. T. Zheng, M. B. Zhang, and G. Y. Yang (2006). Angew. Chem. Int. Ed. 45, 73.

    Article  CAS  Google Scholar 

  14. J. W. Cheng, J. Zhang, S. T. Zheng, and G. Y. Yang (2008). Chem. Eur. J. 14, 88.

    Article  CAS  Google Scholar 

  15. W. H. Fang and G. Y. Yang (2013). CrystEngComm 15, 9504.

    Article  CAS  Google Scholar 

  16. W. H. Fang and G. Y. Yang (2014). CrystEngComm 16, 1885.

    Article  CAS  Google Scholar 

  17. W. H. Fang, J. W. Cheng, and G. Y. Yang (2014). Chem. Eur. J. 20, 2740.

    Google Scholar 

  18. W. H. Fang, Z. L. Wang, and G. Y. Yang (2010). Chin. J. Inorg. Chem. 26, 1917.

    CAS  Google Scholar 

  19. W. H. Fang and G. Y. Yang (2014). J. Solid State Chem. 212, 249.

    Article  CAS  Google Scholar 

  20. J. W. Cheng, S. T. Zheng, and G. Y. Yang (2007). Inorg. Chem. 46, 10261.

    Article  CAS  Google Scholar 

  21. G. M. Sheldrick SADABS, Program for Siemens Area Detector Absorption Corrections (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  22. G. M. Sheldrick SHELXL97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  23. G. M. Sheldrick SHELXS97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  24. J. W. Cheng, S. T. Zheng, and G. Y. Yang (2008). Inorg. Chem. 47, 4930.

    Article  CAS  Google Scholar 

  25. R. Peng, M. Li, and D. Li (2010). Coord. Chem. Rev. 254, 1.

    Article  CAS  Google Scholar 

  26. O. Mamula, M. Lama, S. G. Telfer, A. Nakamura, R. Kuroda, H. Stoeckli-Evans, and R. Scopelitti (2005). Angew. Chem. Int. Ed. 44, 2527.

    Article  CAS  Google Scholar 

  27. R. McLellan, M. A. Palacios, C. M. Beavers, S. J. Teat, E. K. Brechin, and S. J. Dalgarno (2013). Chem. Commun. 49, 9552.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (Nos. 91122028, 21221001, and 50872133), the 973 Program (Nos. 2014CB932101 and 2011CB932504), the NSFC for Distinguished Young Scholars (No. 20725101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Yu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, WH., Yang, GY. Cluster Organic Framework Based on Er3 and Cu5 Cluster Units. J Clust Sci 25, 1479–1488 (2014). https://doi.org/10.1007/s10876-014-0724-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0724-2

Keywords

Navigation