Skip to main content

A New Copper(I) Coordination Polymer with N2-Donor Schiff Base and Its Use as Precursor for CuO Nanoparticle: Spectroscopic, Thermal and Structural Studies

Abstract

A new copper(I) coordination polymer, [Cu((3,4-MeO-ba)2bn)I]n (1), using a bridging Schiff base ligand, N,N′-bis(3,4-dimethoxybenzylidene)butane-1,4-diamine, (3,4-MeO-ba)2bn, containing a flexible spacer (=N–CH2–CH2–CH2–CH2–N=) has been synthesized and characterized by elemental analyses (CHN) and FTIR spectroscopy, thermal analysis and powder X-ray structure analysis. In 1, Cu(I) ions are bridged by Schiff base ligands and iodine atoms forming 1D-chain. The thermal stability of 1 was studied by thermal gravimetric and differential thermal analyses. 1 is used to prepare CuO nanoparticles via solid state thermal decomposition in air and nanoparticles thus formed are characterized by scanning electron microscopy, transmission electron microscopy and powder X-ray diffraction techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme. 1

References

  1. 1.

    M. S. Yazdan Parast and A. Morsali (2012). J. Inorg. Organomet. Chem. 22, 998.

    Article  Google Scholar 

  2. 2.

    S. Aghabeygi, F. Bigdeli, and A. Morsali (2012). J. Inorg. Organomet. Chem. 22, 526.

    CAS  Article  Google Scholar 

  3. 3.

    M. Khanpour and A. Morsali (2011). J. Inorg. Organomet. Chem. 21, 360.

    CAS  Article  Google Scholar 

  4. 4.

    J. Lian, Y. Liang, F.-L. Kwong, Z. Ding, and D. H. L. Ng (2012). Mater. Lett. 66, 318.

    CAS  Article  Google Scholar 

  5. 5.

    M. Payehghadr, V. Safarifard, M. Ramazani, and A. Morsali (2012). J. Inorg. Organomet. Chem. 22, 543.

    CAS  Article  Google Scholar 

  6. 6.

    A. Panjehpour and A. Morsali (2012). J. Inorg. Organomet. Chem. 22, 938.

    CAS  Article  Google Scholar 

  7. 7.

    H. Sadeghzadeh and A. Morsali (2010). J. Inorg. Organomet. Chem. 20, 733.

    CAS  Article  Google Scholar 

  8. 8.

    L. Hashemi, A. Aslani, and A. Morsali (2012). J. Inorg. Organomet. Chem. 22, 867.

    CAS  Article  Google Scholar 

  9. 9.

    L. Hashemi and A. Morsali (2010). J. Inorg. Organomet. Chem. 20, 856.

    CAS  Article  Google Scholar 

  10. 10.

    H. Sadeghzadeh, A. Morsali, and P. Retailleau (2010). Polyhedron 29, 925.

    CAS  Article  Google Scholar 

  11. 11.

    A. D. Khalaji, M. Weil, H. Hadadzadeh, and M. Daryanavard (2009). Inorg. Chim. Acta 362, 4837.

    Article  Google Scholar 

  12. 12.

    M. Morshedi, M. Amirnasr, S. Triki, and A. D. Khalaji (2009). Inorg. Chim. Acta 362, 1367.

    Article  Google Scholar 

  13. 13.

    A. D. Khalaji, K. Jafari, B. Bahramian, K. Fejfarova, and M. Dusek (2013). Monatsh. Chem. 144, 1621.

    CAS  Article  Google Scholar 

  14. 14.

    A. D. Khalaji, S. Triki, and D. Das (2011). J. Therm. Anal. Calorim. 103, 779.

    CAS  Article  Google Scholar 

  15. 15.

    A. D. Khalaji, H. Stoeckli-Evans, and D. Das (2012). Monatsh. Chem. 143, 595.

    CAS  Article  Google Scholar 

  16. 16.

    A. D. Khalaji, K. Jafari, B. Bahramian, K. Fejfarova, and M. Dusek (2013). Russ. J. Coord. Chem. 39, 877.

    CAS  Article  Google Scholar 

  17. 17.

    D. I. Son, C. H. You, and T. W. Kim (2009). Appl. Surf. Sci. 255, 8794.

    CAS  Article  Google Scholar 

  18. 18.

    A. El-Trass, H. ElShamy, I. El-Mehasseb, and M. El-Kemary (2012). Appl. Surf. Sci. 258, 2997.

    CAS  Article  Google Scholar 

  19. 19.

    X. Jia, H. Fan, and W. Yang (2010). J. Dispers. Sci. Technol. 31, 866.

    CAS  Article  Google Scholar 

  20. 20.

    C. Y. Chiang, K. Aroh, and S. H. Ehrman (2012). Int. J. Hydrogen Energy 37, 4871.

    CAS  Article  Google Scholar 

  21. 21.

    V. Safarifard and A. Morsali (2012). Ultrason. Sonochem. 19, 823.

    CAS  Article  Google Scholar 

  22. 22.

    X. Jiang, T. Herricks, and Y. Xia (2002). Nano Lett. 2, 1333.

    CAS  Article  Google Scholar 

  23. 23.

    T. H. Mahato, B. Singh, A. K. Srivastava, G. K. Prasad, A. R. Srivastava, K. Ganesan, and R. Vijayaraghavan (2011). J. Hazard. Mater. 192, 1890.

    CAS  Article  Google Scholar 

  24. 24.

    G. R. Khayati, E. Nourafkan, G. Karimi, and J. Moradgholi (2013). Adv. Powder Technol. 24, 301.

    CAS  Article  Google Scholar 

  25. 25.

    R. Wu, Z. Ma, Z. Gu, and Y. Yang (2010). J. Alloy. Compd. 504, 45.

    CAS  Article  Google Scholar 

  26. 26.

    H. Haddadian, A. Aslani, and A. Morsali (2009). Inorg. Chim. Acta 362, 1805.

    CAS  Article  Google Scholar 

  27. 27.

    H. Sadeghzadeh, A. Morsali, V. T. Yilmaz, and O. Buyukaungor (2010). Mater. Lett. 64, 810.

    CAS  Article  Google Scholar 

  28. 28.

    L. Aboutorabi and A. Morsali (2010). Inorg. Chim. Acta 363, 2506.

    CAS  Article  Google Scholar 

  29. 29.

    M. GhoreishiAmiri, A. Morsali, and F. Bigdeli (2011). J. Inorg. Organomet. Chem. 21, 195.

    Article  Google Scholar 

  30. 30.

    M. Hosseinifard, L. Hashemi, V. Amani, K. Kalateh, and A. Morsali (2011). J. Inorg. Organomet. Chem. 21, 527.

    Article  Google Scholar 

  31. 31.

    L. Hashemi and A. Morsali (2012). J. Inorg. Organomet. Chem. 22, 272.

    CAS  Article  Google Scholar 

  32. 32.

    M. C. Burla, M. Camalli, B. Carrozzini, G. Cascarano, C. Giacovazzo, G. Polidori, and R. Spagna (2003). J. Appl. Cryst. 36, 1103.

    CAS  Article  Google Scholar 

  33. 33.

    V. Petricek, M. Dusek, and L. Palatinus Jana 2006: Structure Determination Software Programs (Czech Republic, Institute of Physics, 2008).

    Google Scholar 

  34. 34.

    L. J. Farrugia (1997). J. Appl. Cryst. 30, 65.

    Article  Google Scholar 

  35. 35.

    C. H. Baerlocher, L. B. McCusker, and L. Palatinus (2007). Z. Kristallogr. 222, 47.

    CAS  Article  Google Scholar 

  36. 36.

    D. Sisak, C. Baerlocher, L. B. McCusker, and C. J. Gilmore (2012). J. Appl. Cryst. 45, 1125.

    CAS  Article  Google Scholar 

  37. 37.

    J. Rohlicek and M. Husak (2007). J. Appl. Cryst. 40, 600.

    CAS  Article  Google Scholar 

  38. 38.

    V. Favre-Nicolin and R. Černý (2002). J. Appl. Cryst. 35, 734.

    CAS  Article  Google Scholar 

  39. 39.

    A. D. Khalaji, K. Fejfarova, and M. Dusek (2009). Acta Cryst. E65, o1773.

    Google Scholar 

  40. 40.

    K. G. Chandrappa and T. V. Venkatesha (2013). J. Exp. Nanosci. 8, 516.

    CAS  Article  Google Scholar 

  41. 41.

    H. Xu, J. Huang, and Y. Chen (2011). Integr. Ferroelectr. 129, 25.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Golestan University (GU) for partial support of this work, the institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Pramium Academiae of the Academy of Sciences of the Czech Republic.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aliakbar Dehno Khalaji.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khalaji, A.D., Rohlicek, J., Machek, P. et al. A New Copper(I) Coordination Polymer with N2-Donor Schiff Base and Its Use as Precursor for CuO Nanoparticle: Spectroscopic, Thermal and Structural Studies. J Clust Sci 25, 1425–1434 (2014). https://doi.org/10.1007/s10876-014-0719-z

Download citation

Keywords

  • Copper(I) complex
  • Schiff base
  • Spectroscopy
  • Thermal study
  • Nanoparticle
  • SEM
  • XRD