Skip to main content
Log in

Synthesis, Structure and Characterisation of One Two-Dimensional Layered Vanadium Tellurite [H2en] n [V2Te2O10] n

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A two-dimensional layered organic templated vanadium tellurite, [H2en] n [V2Te2O10] n 1 (en = ethanediamine) has been synthesized through a conventional hydrothermal reaction and structurally characterized by X-ray powder diffraction, X-ray single-crystal diffraction analysis, FTIR, UV-DRS, thermogravimetric analysis (TGA), thermal-dependent 2D-IR correlation spectroscopy (2D-COS IR) and element analysis. Compound 1 is allomorphic to [H2en][V2Te2O5]2 which is reported by Jung et al. According to the data of compound 2 got from the Cambridge Crystallographic Data Centre (CCDC) and Mercury, we optimize the H-bondings of compound 2. The two compounds are compared in weak interactions, IR and TGA characterizations, and UV and thermal-dependent 2D-IR spectroscopy of compound 1 was supplementary reported. Furthermore, we calculated the topology type of both two compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. L. Feng and J. G. Mao (2005). J. Solid State Chem. 178, 2256–2261.

    Article  CAS  Google Scholar 

  2. B. Gao, S. X. Liu, L. H. Xie, X. H. Wang, C. D. Zhang, C. Y. Sun, N. H. Hu, and H. Q. Jia (2005). J. Solid State Chem. 175, 1825–1829.

    Article  Google Scholar 

  3. X. H. Huang, Z. Q. Liu, C. C. Huang, L. J. Shen, and X. B. Yan (2009). Acta Cryst. C65, m404–m406.

    Google Scholar 

  4. K. B. Chang, D. J. Hubbard, M. Zeller, J. Schrier, and A. J. Norquist (2010). Inorg. Chem. 49, 5167–5172.

    Article  CAS  Google Scholar 

  5. M. D. Smith, S. M. Blau, K. B. Channg, M. Zeller, J. Schrier, and A. J. Norquist (2011). Cryst. Growth Des. 11, 4213–4219.

    Article  CAS  Google Scholar 

  6. H. Nakano, T. Ozeki, and A. Yagasaki (2001). Inorg. Chem. 40, 1816–1819.

    Article  CAS  Google Scholar 

  7. S. Zhan, Z. Dong, F. Sh. Hua, L. G. Hua, D. Zh. Min, F. W. Sheng, C. X. Bo, and H. Jia (2002). J. Chem. Soc., Dalton Trans. 2002, 1873–1874.

    Google Scholar 

  8. Z. M. Dai, X. B. Chen, Z. Shi, D. Zhang, G. H. Li, and S. H. Feng (2003). Inorg. Chem. 42, 908–912.

    Article  CAS  Google Scholar 

  9. W. T. A. Harrison, M. L. F. Phillips, J. Stanchfield, and T. M. Nenoff (2000). Angew. Chem. 112, 3966–3968.

    Article  Google Scholar 

  10. A. Choudhury, U. KumarD, and C. N. R. Rao (2002). Angew. Chem. Int. Ed. 41, 158–161.

    Article  CAS  Google Scholar 

  11. C. N. R. Rao, E. V. S. R. Nagarajan, G. Paul, J. N. Behera, and A. Choudhury (2004). Chem. Mater. 16, 1441–1446.

    Article  CAS  Google Scholar 

  12. C. N. R. Rao, J. N. Behera, and M. Dan (2006). Chem. Soc. Rev. 35, 375–387.

    Article  CAS  Google Scholar 

  13. V. Koteswara Rao, Sandip Chakrabarti, and S. Natarajan (2007). Inorg. Chem. 46, 10781–10790.

    Article  Google Scholar 

  14. K. Adil, M. Leblanc, and V. M. P. Lightfoot (2010). Dalton Trans. 39, 5983–5993.

    Article  CAS  Google Scholar 

  15. K. B. Chang, D. J. Hubbard, M. Zeller, J. Schrier, and A. J. Norquist (2010). Inorg. Chem. 49, 5167–5172.

    Article  CAS  Google Scholar 

  16. K. B. Chang, M. D. Smith, S. M. Blau, E. C. Glor, M. Zeller, J. Schrier, and A. J. Norquist (2013). Cryst. Growth Des. 13, 2190–2197.

    Article  CAS  Google Scholar 

  17. X. H. Huang, C. C. Huang, D. S. Liu, Z. Q. Liu, and Y.-B. Wang (2010). Cryst. Growth Des. 10, 2011–2024.

    Article  Google Scholar 

  18. X. H. Huang, Z. Q. Liu, C. C. Huang, L. J. Shen, and X.-B. Yan (2009). Acta Cryst. C65, m404–m406.

    Google Scholar 

  19. T. Sivakumar, H. Y. Chang, J. Baek, and P. S. Halasyamani (2007). Chem. Mater. 19, 4710–4715.

    Article  CAS  Google Scholar 

  20. T. Sivakumar, K. M. Ok, and P. S. Halasyamani (2006). Inorg. Chem. 45, 3602–3605.

    Article  CAS  Google Scholar 

  21. M. L. Feng and J. G. Mao (2005). J. Solid State Chem. 178, 2256–2261.

    Article  CAS  Google Scholar 

  22. B. Gao, S. X. Liu, L. H. Xie, X. H. Wang, C. D. Zhang, C. Y. Sun, N. H. Hu, and H. Q. Jia (2005). J. Solid State Chem. 175, 1825–1829.

    Article  Google Scholar 

  23. Q. H. Gu, C. L. Hu, J. H. Zhang, and J. G. Mao (2011). Dalton Trans. 40, 2562–2569.

    Article  CAS  Google Scholar 

  24. G. Han, Y.- Song, and Z.-B. Han (2009). J. Solid State Chem. 182, 2202–2207.

    Article  CAS  Google Scholar 

  25. H. L. Jiang, F. Kong, Y. Fan, and J. G. Mao (2008). Inorg. Chem. 47, 7430–7437.

    Article  CAS  Google Scholar 

  26. S. Konaka, Y. Ozawa, T. Shonaka, S. Watanabe, and A. Yagasaki (2011). Inorg. Chem. 50, 6183–6188.

    Article  CAS  Google Scholar 

  27. F. Kong, C. L. Hu, T. Hu, Y. Zhou, and J. G. Mao (2009). Dalton Trans. 38, 4962–4970.

    Article  Google Scholar 

  28. K. M. Ok and P. S. Halasyamani (2002). Inorg. Chem. 41, 3805–3807.

    Article  CAS  Google Scholar 

  29. O. Kang Min, N. S. P. Bhuvanesh, and P. Shiv Halasyamani (2001). Inorg. Chem. 40, 1978–1980.

    Article  Google Scholar 

  30. P. Yetta, N. S. P. Bhuvanesh, and P. Shiv Halasyamani (2001). Inorg. Chem. 40, 1172–1175.

    Article  Google Scholar 

  31. P. Yetta, O. Kang Min, N. S. P. Bhuvanesh, and P. Shiv Halasyamani (2001). Chem. Mater. 13, 1910–1915.

    Article  Google Scholar 

  32. V. Balraj and K. Vidyasagar (1998). Inorg. Chem. 37, 4764–4774.

    Article  CAS  Google Scholar 

  33. V. Balraj and K. Vidyasagar (1999). Inorg. Chem. 38, 1394–1400.

    Article  CAS  Google Scholar 

  34. V. Balraj and K. Vidyasagar (1999). Inorg. Chem. 38, 3458–3462.

    Article  CAS  Google Scholar 

  35. V. Balraj and K. Vidyasagar (1999). Inorg. Chem. 38, 5809–5813.

    Article  CAS  Google Scholar 

  36. Y. Gong, J. Liu, C. Hu, and W. Gao (2007). Inorg. Chem. Commun. 10, 575–579.

    Article  CAS  Google Scholar 

  37. J. H. Guo, W. Guo, X. Wang, and M. Du (2012). Inorg. Chem. Commun. 22, 77–81.

    Article  Google Scholar 

  38. Z. Y. Du, Y. H. Sun, S. Y. Zhang, Z. G. Zhou, and Y. R. Xie (2010). J. Mol. Struct. 979, 200–204.

    Article  CAS  Google Scholar 

  39. B. Venkataramanan, Z. Ning, J. J. Vittal, and S. Valiyaveettil (2005). Cryst. Eng. Commun. 7, 108–112.

    Article  CAS  Google Scholar 

  40. V. C. Gibson, A. J. P. W. Stefan, K. Spitzmesser, and D. J. Williams (2003). Dalton Trans. 13, 2718–2727.

    Article  Google Scholar 

  41. J. P. Zhang, X. C. Huang, and X. M. Chen (2009). Chem. Soc. Rev. 38, 2385–2396.

    Article  CAS  Google Scholar 

  42. M. J. Zaworotko (2001). Chem. Commun. 4, 1–9.

    Article  Google Scholar 

  43. K. Jung, H. Kim, H. Yun, J. Do, and Z. Anorg (2006). Allg. Chem. 632, 1582–1585.

    Article  CAS  Google Scholar 

  44. G. M. Sheldrick, SHELXS 97, Program for the Solution of Crystal Structure (University of Göttingen, Göttingen, Germany, 1997).

  45. G. M. Sheldrick, SHELXL 97, Program for the Refinement of Crystal Structure (University of Göttingen, Göttingen, Germany, 1997).

  46. Reticular Chemistry Structure Resource (RCSR), http://rcsr.anu.edu.au/.

  47. V. A. Blatov, A. P. Shevchen ko, TOPOS 4.0 (Samara State University, Russia, 2008).

  48. J. Jia, X. Lin, C. Wilson, A. J. Blake, N. R. Champness, P. Hubberstey, G. Walker, E. J. Cussen, and M. Schroder (2007). Chem. Commun. 8, 840–842.

    Article  Google Scholar 

  49. X. M. Zhang, Y. Z. Zheng, C. R. Li, W. X. Zhang, and X.-M. Chen (2007). Cryst. Growth Des. 7, 980–983.

    Article  CAS  Google Scholar 

  50. Z. M. Hao, R. Q. Fang, H-Sh Wu, and X. M. Zhang (2008). Inorg. Chem. 47, 8197–8203.

    Article  CAS  Google Scholar 

  51. F. N. Shi, C. S. Luis, T. Trindade, J. R. Filipe, and A. A. Paz (2009). Cryst. Growth Des. 9, 2098–2109.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Science Foundation of China (Grants 21003020), Fujian Provincial Natural Science Foundation (2013J01042), Open Fund of State Key Laboratory of Structural Chemistry (20130015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Chen.

Appendix: Supplementary Material

Appendix: Supplementary Material

Crystallographic data for the compound 1 has been deposited with the Cambridge Crystallographic Data Centre (CCDC) as Supplementary Publications CCDC reference number 970648. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB 21 EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Chen, Y., Guo, Z. et al. Synthesis, Structure and Characterisation of One Two-Dimensional Layered Vanadium Tellurite [H2en] n [V2Te2O10] n . J Clust Sci 25, 1363–1375 (2014). https://doi.org/10.1007/s10876-014-0714-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0714-4

Keywords

Navigation