Advertisement

Journal of Cluster Science

, Volume 25, Issue 5, pp 1187–1201 | Cite as

The Influence of Unsaturated Hydrocarbon Ligands on the Stabilization of Platinum Tetramer

  • Mikail Aslan
  • Zihni Öztürk
  • Ali SebetciEmail author
Original Paper

Abstract

In the present study, Pt4(CH)n (1 ≤ n ≤ 7) and Pt4(benzene)2 metalorganic complexes have been investigated by performing density functional theory within spin polarized local density approximation, generalized gradient approximation and hybrid exchange correlation functionals in terms of the geometric properties, stability and energetics, electronic properties and chemical reactivity indexes. Locally stable isomers are distinguished from transition states by vibrational frequency analysis. Our calculations indicate that Pt4(CH)4 and Pt4benzene metal hydrocarbon complexes are the most stable structures among the studied species.

Keywords

Metal clusters Density functional theory Stability Energetics Electronic properties Hydrocarbons Unsaturated hydrocarbons Electrophilicity Chemical hardness Chemical potential Chemical reactivity indexes 

References

  1. 1.
    F. Baletto and R. Ferrando (2005). Rev. Mod. Phys 77, 371.CrossRefGoogle Scholar
  2. 2.
    K. Kuppusamy and C. Murugan (2009). Int. J. Integr. Biol. 5, (2), 75–81.Google Scholar
  3. 3.
    I. Robinson, S. Zacchini, L. D. Tung, S. Maenosono, and N. T. K. Thanh (2009). Chem. Mater. 21, 3021.CrossRefGoogle Scholar
  4. 4.
    S. Shylesh, V. Schuneman, and W. R. Thiel (2010). Angew. Chem. Int. Ed. 49, 3428.CrossRefGoogle Scholar
  5. 5.
    Satyender Goel, Kirill A. Velizhanin, Andrei Piryatinski, Sergei Tretiak, and Sergei A. Ivanov (2010). J. Phys. Chem. Lett. 1, (6), 927–931.CrossRefGoogle Scholar
  6. 6.
    G. Ertl, D. Prigge, R. Schloegl, and M. Weiss (1983). J. Catal 79, 359–377.CrossRefGoogle Scholar
  7. 7.
    J. Yang, V. Tschamber, D. Habermacher, F. Garin, and P. Gilot (2008). Appl. Catal. B 83, 229–239.CrossRefGoogle Scholar
  8. 8.
    G. Schmid Applied Homogeneous Catalysis with Organometallic Compounds, vol. 2 (Wiley, Wienheim, 1996), pp. 636–644.Google Scholar
  9. 9.
    H. Bonnemann and W. Brijoux Advanced Catalysts and Nanostructured Materials, Chap 7 (Academic Press, San Diego, 1996), pp. 165–196.CrossRefGoogle Scholar
  10. 10.
    W. A. Herrmann and B. Cornils Applied Homogeneous Catalysis with Organometallic Compounds, vol. 2 (Wiley, Wienheim, 1996), pp. 1171–1172.Google Scholar
  11. 11.
    M. Gotz and H. Wendt (1998). Electrochim. Acta 43, 3637.CrossRefGoogle Scholar
  12. 12.
    T. J. Schmidt, M. Noeske, H. A. Gasteiger, R. J. Behm, P. Britz, W. Brijoux, and H. Bonnemann (1997). Langmuir 13, 2591.CrossRefGoogle Scholar
  13. 13.
    T. J. Schmidt, M. Noeske, H. A. Gasteiger, R. J. Behm, P. Britz, and H. Bonnemann (1998). J. Electrochem. Soc. 145, 925.CrossRefGoogle Scholar
  14. 14.
    Giovanni Barcaro and Alessandro Fortunelli (2009). Theor. Chem. Acc. 123, 317–325.CrossRefGoogle Scholar
  15. 15.
    N. Toshima and T. Yonezawa (1998). New J. Chem. 22, 1179.CrossRefGoogle Scholar
  16. 16.
    J. D. Aiken III and R. G. Finke (1999). J. Mol. Catal. A 145, 1.CrossRefGoogle Scholar
  17. 17.
    T. Leisner, C. Rosche, S. Wolf, F. Granzer, and L. Woste (1996). Surf. Rev. Lett. 3, 1105.CrossRefGoogle Scholar
  18. 18.
    M. Faraday (1857). Philos Trans. R Soc. Lond 147, 145.CrossRefGoogle Scholar
  19. 19.
    Chun-Jiang Jia and Ferdi Schüth (2011). Phys. Chem. Chem. Phys 13, 2457–2487.CrossRefGoogle Scholar
  20. 20.
    V. Haensel and H. S. Bloch (1964). Platin. Met. Rev 8, 2–8.Google Scholar
  21. 21.
    L. N. Lewis and N. Lewis (1986). J. Am. Chem. Soc. 108, 7228–7231.CrossRefGoogle Scholar
  22. 22.
    J. S. Bradley, in G. Schmid (ed), Clusters and Colloids (VCH, Weinheim, 1994), p 459.Google Scholar
  23. 23.
    M. T. Reetz and W. Helbig (1994). J. Am. Chem. Soc. 116, 7401–7402.CrossRefGoogle Scholar
  24. 24.
    J. R. Blackborrow and D. Young Metal Vapor Synthesis (Springer, NewYork, 1979).CrossRefGoogle Scholar
  25. 25.
    F. Mittendorfer, C. Thomazeau, P. Raybaud, and H. Toulhoa (2003). J. Phys. Chem. B 107, (44), 12287–12295.CrossRefGoogle Scholar
  26. 26.
    F. Zaera (1991). Langmuir 7, 1998.CrossRefGoogle Scholar
  27. 27.
    X. Wang and L. Andrews (2004). J. Phys. Chem. A 108, (22), 4838–4845.CrossRefGoogle Scholar
  28. 28.
    J. Granatier, M. Dubecký, P. Lazar, M. Otyepka, and P. Hobza (2013). J. Chem. Theory Comput. 9, (3), 1461–1468.CrossRefGoogle Scholar
  29. 29.
    D. Majumdar, S. Roszak, and K. Balasubramanian (2001). J. Chem. Phys. 114, 10300–10310.CrossRefGoogle Scholar
  30. 30.
    E. J. Bylaska, W. A. de Jong, K. Kowalski, T. P. Straatsma, M. Valiev, D. Wang, E. Apra, T. L. Windus, S. Hirata, et al., NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.0 (Pacific Northwest National Laboratory, Richland, 2006), pp. 99352–0999.Google Scholar
  31. 31.
    M. M. Hurley, L. F. Pacios, P. A. Christiansen, R. B. Ross, and W. C. Ermler (1986). J. Chem. Phys. 84, 6840.CrossRefGoogle Scholar
  32. 32.
    A. D. Becke (1988). Phys. Rev. A 38, 3098.CrossRefGoogle Scholar
  33. 33.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.Google Scholar
  34. 34.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.Google Scholar
  35. 35.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.Google Scholar
  36. 36.
    S. J. Vosko, L. Wilk, and M. Nusair (1980). Can. J. Phys. 58, 1200.Google Scholar
  37. 37.
    A. Sebetci (2006). Chem. Phys. 331, 9.Google Scholar
  38. 38.
    A. Sebetci (2009). Phys. Chem. Chem. Phys. 11, 921.Google Scholar
  39. 39.
    J. Li, X. Li, H.-J. Zhai, and L.-S. Wang (2003). Science 299(5608), 864–867.Google Scholar
  40. 40.
    R. Rarr and R. G. Pearson (1983). J. Am. Chem. Soc. 105, 7512–7516.Google Scholar
  41. 41.
    C. L. Heredia, V. Ferraresi-Curotto, and M. B. López (2012). Comp. Mater. Sci. 53, 18–24.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Physics Engineering DepartmentGaziantep UniversityGaziantepTurkey
  2. 2.Electrical-Electronics Engineering DepartmentZirve UniversityGaziantepTurkey
  3. 3.Mechanical Engineering DepartmentMevlana (Rumi) UniversityKonyaTurkey

Personalised recommendations