Journal of Cluster Science

, Volume 25, Issue 4, pp 969–978 | Cite as

Green Synthesized Gold Nanoparticles as a Probe for the Detection of Fe3+ Ions in Water

Original Paper

Abstract

Pure water which is free of toxic chemicals is necessary for human health. So, detection and control of heavy metal ions in water is very important. Keeping this in mind, selective and sensitive optical sensor based on surface plasmon resonance for detection of various heavy metals in water using gold nanoparticles was explained in this present study. These AuNPs were prepared using Hibiscus cannabinus leaf extract as reducing agent with the average particle size of 22 nm. These gold nanoparticles are considerably selective and sensitive towards Fe3+ and it was used to detect the concentration of Fe3+ ions in water in the range 29.82–173.74 μM by tracking the absorbance changes of SPR band and the sensitivity of the system towards the Fe3+ concentration and it was found to be 0.0037 μM−1. We hope that these gold nanoparticles can be used for detecting Fe3+ ions concentration, in the water purification processes.

Keywords

Gold nanoparticles H.cannabinus Surface plasmon resonance Iron sensor 

References

  1. 1.
    M. A. Anderson and F. M. M. Morel (1978). Limnol. Oceanogr. 23, 283.CrossRefGoogle Scholar
  2. 2.
    J. E. T. Andersen (2005). Analyst 130, 385.CrossRefGoogle Scholar
  3. 3.
    G. L. Arnold, S. Weyer, and A. D. Anbar (2004). Anal. Chem. 76, 322.CrossRefGoogle Scholar
  4. 4.
    K. Pomazal, C. Prohaska, I. Steffan, G. Reich, and J. F. K. Huber (1999). Analyst 124, 657.CrossRefGoogle Scholar
  5. 5.
    C. M. G. van den Berg (2006). Anal. Chem. 78, 156.CrossRefGoogle Scholar
  6. 6.
    Z. Qi, H. Zhou, N. Matsuda, I. Honma, K. Shimada, A. Takatsu, and K. Kato (2004). J. Phys. Chem. B 108, 7006.CrossRefGoogle Scholar
  7. 7.
    D. Philip (2010). Physica E 42, 1417.CrossRefGoogle Scholar
  8. 8.
    M. Umadevi, S. Shalini, and M. R. Bindhu (2012). Adv. Nat. Sci. Nanosci. Nanotechnol. 3, (025008), 1.Google Scholar
  9. 9.
    M. Umadevi, M. R. Bindhu, and V. A. Sathe (2013). J. Mater. Sci. Technol. 29, 317.CrossRefGoogle Scholar
  10. 10.
    S. A. Aromal and D. Philip (2012). Spectrochim. Acta A 97, 1.CrossRefGoogle Scholar
  11. 11.
    M. R. Bindhu and M. Umadevi (2013). Spectrochim. Acta A 101, 184.CrossRefGoogle Scholar
  12. 12.
    J. Das, M. Paul Das, and P. Velusamy (2013). Spectrochim. Acta A 104, 265.CrossRefGoogle Scholar
  13. 13.
    M. R. Bindhu, V. G. Sathe, and M. Umadevi (2013). Spectrochim. Acta A 115, 409.CrossRefGoogle Scholar
  14. 14.
    D. Philip (2009). Spectrochim. Acta A 73, 374.CrossRefGoogle Scholar
  15. 15.
    M. R. Bindhu and M. Umadevi (2013). Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles. Spectrochim Acta A 121C, 596–604.Google Scholar
  16. 16.
    A. O. Adebayo (2010). Am. J. Sci. 6, 165.Google Scholar
  17. 17.
    M. Kobaisy, M. R. Tellez, C. L. Webber, F. E. Dayan, K. L. Schrader, and D. E. Wedge (2001). J. Agric. Food Chem. 49, 3768.CrossRefGoogle Scholar
  18. 18.
    K. Abe, Y. Ozaki, and K. Mizuta (1999). Soil Sci. Plant Nutr. 45, 409.CrossRefGoogle Scholar
  19. 19.
    A.G.Agbor, J.E.Oben, J.Y. Ngogang (2002) International symposium on medicinal plants, health and environment, Rabat, p 24, book of abstracts.Google Scholar
  20. 20.
    R. Jenkins and R. L. Snyder Introduction to X-ray Powder Diffractiometry (Wiley, New York, 1996), p. 544.CrossRefGoogle Scholar
  21. 21.
    C. Y. Panicker, H. T. Varghese, and D. Philip (2006). Spectrochim. Acta A 65, 802.CrossRefGoogle Scholar
  22. 22.
    T. C. Prathna, N. Chandrasekaran, M. AshokRaichur, and A. Mukherjee (2011). Colloids Surf. B 82, 152.CrossRefGoogle Scholar
  23. 23.
    J. G. Allpress and J. V. Sanders (1967). Surf. Sci. 7, 1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsMother Teresa Women’s UniversityKodaikanalIndia

Personalised recommendations