Skip to main content
Log in

Soft Matter Approaches for Enhancing the Catalytic Capabilities of Polyoxometalate Clusters

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this minireview, we discuss the recent efforts on expanding the catalytic capabilities of polyoxometalates (POM) through emulsion catalysis approaches with novel catalytic-active POM–organic hybrid clusters as emulsifiers. The hybrid emulsifiers include surfactant encapsulated POM complexes, molecular POMs–organic hybrids, and POM-based solid nanoparticles. With such novel approaches the catalytic efficiency of the POMs can be significantly improved by enhancing the compatibility of the POMs with organic media, providing catalytic interface for biphasic reactions, as well as easier preparation, and better recyclability. Particularly, a simple, green chemistry method to prepare metal nanoparticle materials with POMs as both reducing and capping agents in aqueous is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. T. Pope and A. Müller Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications (Kluwer Academic Publishers, Dordrecht, 2002).

    Book  Google Scholar 

  2. J. Q. Yin, J. Tan, C. Besson, Y. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, and C. L. Hill (2010). Science 328, 342.

    Article  CAS  Google Scholar 

  3. K. Kamata, K. Yonehara, Y. Sumida, K. Yamaguchi, S. Hikichi, and N. Mizuno (2003). Science 300, 964.

    Article  CAS  Google Scholar 

  4. A. Proust, R. Thouvenot, and P. Gouzerh (2008). Chem. Commun. 28, 1837.

    Article  CAS  Google Scholar 

  5. D. Du, J. Qin, T. Wang, S. Li, Z. Su, K. Shao, Y. Lan, X. Wang, and E. Wang (2012). Chem. Sci. 3, 705.

    Article  CAS  Google Scholar 

  6. J. Han and C. Hill (2007). J. Am. Chem. Soc. 129, 15094.

    Article  CAS  Google Scholar 

  7. N. Mizuno, S. Uchida, K. Kamata, R. Ishimoto, S. Nojima, K. Yonehara, and Y. Sumida (2010). Angew. Chem. Int. Ed. 49, 9972.

    Article  CAS  Google Scholar 

  8. J. Song, Z. Luo, D. K. Britt, H. Furukawa, O. M. Yaghi, K. I. Hardcastle, and C. L. Hill (2011). J. Am. Chem. Soc. 133, 16839.

    Article  CAS  Google Scholar 

  9. A. Haimov, H. Cohen, and R. Neumann (2004). J. Am. Chem. Soc. 126, 11762.

    Article  CAS  Google Scholar 

  10. A. Haimov and R. Neumann (2006). J. Am. Chem. Soc. 128, 15697.

    Article  CAS  Google Scholar 

  11. G. Maayan, R. Popovitz-Biro, and R. Neumann (2006). J. Am. Chem. Soc. 128, 4968.

    Article  CAS  Google Scholar 

  12. R. Neumann and M. Cohen (1997). Angew. Chem. Int. Ed. Engl. 36, 1738.

    Article  CAS  Google Scholar 

  13. K. Yamaguchi, C. Yoshida, S. Uchida, and N. Mizuno (2004). J. Am. Chem. Soc. 126, 53.

    Article  CAS  Google Scholar 

  14. A. Dolbecq, E. Dumas, C. R. Mayer, and P. Mialane (2010). Chem. Rev. 110, 6009.

    Article  CAS  Google Scholar 

  15. Y. Song, D. Long, C. Ritchie, and L. Cronin (2011). Chem. Rec. 11, 158.

    Article  CAS  Google Scholar 

  16. W. Li, W. Bu, H. Li, L. Wu, and M. Li (2005). Chem. Commun. 14, 3785.

    Article  CAS  Google Scholar 

  17. J. Gao, Y. Zhang, G. Jia, Z. Jiang, S. Wang, H. Lu, B. Song, and C. Li (2008). Chem. Commun. 3, 332.

    Article  CAS  Google Scholar 

  18. C. Jahier, M. Cantuel, N. D. McClenaghan, T. Buffeteau, D. Cavagnat, F. Agbossou, M. Carraro, M. Bonchio, and S. Nlate (2009). Chem. Eur. J. 15, 8703.

    Article  CAS  Google Scholar 

  19. Y. Wang, H. Li, W. Qi, Y. Yang, Y. Yan, B. Li, and L. Wu (2012). J. Mater. Chem. 22, 9181.

    Article  CAS  Google Scholar 

  20. A. Nisar, J. Zhuang, and X. Wang (2011). Adv. Mater. 23, 1130.

    Article  CAS  Google Scholar 

  21. H. Zeng, G. R. Newkome, and C. L. Hill (2000). Angew. Chem. Int. Ed. 39, 1771.

    Article  Google Scholar 

  22. B. Matt, S. Renaudineau, L. M. Chamoreau, C. Afonso, G. Izzet, and A. Proust (2011). J. Org. Chem. 76, 3107.

    Article  CAS  Google Scholar 

  23. S. Landsmann, C. Lizandara-Pueyo, and S. Polarz (2010). J. Am. Chem. Soc. 132, 5315.

    Article  CAS  Google Scholar 

  24. J. Zhang, Y. Song, L. Cronin, and T. Liu (2008). J. Am. Chem. Soc. 130, 14408.

    Article  CAS  Google Scholar 

  25. P. Yin, J. Wang, Z. Xiao, P. Wu, Y. Wei, and T. Liu (2012). Chem. Eur. J. 18, 9174.

    Article  CAS  Google Scholar 

  26. A. Troupis, A. Hiskia, and E. Papaconstantinou (2002). Angew. Chem. Int. Ed. Engl. 41, 1911.

    Article  CAS  Google Scholar 

  27. S. Mandal, P. R. Selvakannan, R. Pasricha, and M. Sastry (2003). J. Am. Chem. Soc. 125, 8440.

    Article  CAS  Google Scholar 

  28. A. Neyman, L. Meshi, L. Zeiri, and I. Winstock (2008). J. Am. Chem. Soc. 130, 16480.

    Article  CAS  Google Scholar 

  29. B. Keita, T. Liu, and L. Nadjo (2009). J. Mater. Chem. 19, 19.

    Article  CAS  Google Scholar 

  30. S. Mandal, A. Das, R. Srivastava, and M. Sastry (2005). Langmuir. 21, 2408.

    Article  CAS  Google Scholar 

  31. A. V. Gordeev, N. I. Kartashev, and B. G. Ershov (2002). High Energy Chem. 36, 75.

    Article  CAS  Google Scholar 

  32. R. Neumann and A. M. Khenkin (1994). J. Org. Chem. 59, 7577.

    Article  CAS  Google Scholar 

  33. H. Lü, J. Gao, Z. Jiang, F. Jing, Y. Yang, G. Wang, and C. Li (2006). J. Cat. 239, 369.

    Article  CAS  Google Scholar 

  34. C. Li, Z. Jiang, J. Gao, Y. Yang, S. Wang, F. Tian, F. A. Sun, X. Sun, P. Ying, and C. Han (2004). Chem. Eur. J. 10, 2277.

    Article  CAS  Google Scholar 

  35. C. P. Pradeep, F. Y. Li, C. Lydon, H. N. Miras, D. L. Long, L. Xu, and L. Cronin (2011). Chem. Eur. J. 17, 7472.

    Article  CAS  Google Scholar 

  36. O. Oms, K. Hakouk, R. Dessapt, P. Deniard, S. Jobic, A. Dolbecq, T. Palacin, L. Nadjo, B. Keita, J. Marrota, and P. Mialane (2012). Chem. Commun. 48, 12103.

    Article  CAS  Google Scholar 

  37. D. Ma, L. Liang, W. Chen, H. Liu, and Y. Song (2013). Adv. Funct. Mater. 3, 16990.

  38. M. F. Misdrahi, M. Wang, C. P. Pradeep, F. Y. Li, C. Lydon, L. Xu, L. Cronin, and T. Liu (2011). Langmuir. 27, 9193.

    Article  CAS  Google Scholar 

  39. J. Zhang, Y. Song, L. Cronin, and T. Liu (2010). Chem. Eur. J. 16, 11320.

    Article  CAS  Google Scholar 

  40. D. Li, J. Song, P. Yin, S. Simotwo, A. J. Bassler, Y. Aung, J. E. Roberts, K. I. Hardcastle, C. L. Hill, and T. Liu (2011). J. Am. Chem. Soc. 133, 14010.

    Article  CAS  Google Scholar 

  41. P. Yin, P. Wu, Z. Xiao, D. Li, E. Bitterlich, J. Zhang, P. Cheng, D. V. Vezenov, T. Liu, and Y. Wei (2011). Angew. Chem. Int. Ed. Engl. 50, 2521.

    Article  CAS  Google Scholar 

  42. Q. Chen, D. P. Goshorn, C. P. Scholes, X. L. Tan, and J. Zubieta (1992). J. Am. Chem. Soc. 114, 4667.

    Article  CAS  Google Scholar 

  43. N. Mizuno and K. Kamata (2011). Coord. Chem. Rev. 255, 2358.

    Article  CAS  Google Scholar 

  44. Y. He, F. Wu, X. Sun, R. Li, Y. Guo, C. Li, L. Zhang, F. Xing, W. Wang, and J. Gao (2013). Appl. Mater. Interfaces 5, 4843.

    Article  CAS  Google Scholar 

  45. J. Faria, M. P. Ruiz, and D. E. Resasco (2010). Adv. Synth. Catal. 352, 2359.

    Article  CAS  Google Scholar 

  46. L. Leclercq, A. Mouret, A. Proust, V. Schmitt, P. Bauduin, J. M. Aubry, and V. Nardello-Rataj (2012). Chem. Eur. J. 18, 14352.

    Article  CAS  Google Scholar 

  47. B. Keita, L. R. B. Holzle, R. N. Biboum, L. Nadjo, I. M. Mbomekalle, S. Franger, P. Berthet, F. Brisset, F. Miserque, and G. A. Ekedi (2011). Eur. J. Inorg. Chem. 2011, 1201.

    Article  CAS  Google Scholar 

  48. B. Keita, R. N. Biboum, I. M. Mbomekalle, S. Franger, E. Cadot, F. Miserque, P. Berthet, and L. Nadjo (2008). J. Mater. Chem. 18, 3196.

    Article  CAS  Google Scholar 

  49. G. Zhang, B. Keita, A. Dolbecq, P. Mialane, F. Secheresse, F. Miserque, and L. Nadjo (2007). Chem. Mater. 19, 5821.

    Article  CAS  Google Scholar 

  50. J. Zhang, B. Keita, L. Nadjo, I. M. Mbomekalle, and T. Liu (2008). Langmuir. 24, 5277.

    Article  CAS  Google Scholar 

  51. T. Liu, E. Diemann, H. Li, A. Dress, and A. Müller (2003). Nature 426, 59.

    Article  CAS  Google Scholar 

  52. R. N. Biboum, B. Keita, S. Franger, C. P. N. Njiki, G. Zhang, J. Zhang, T. Liu, I. M. Mbomekalle, and L. Nadjo (2010). Materials 3, 741.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (CHE1026505) and the University of Akron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianbo Liu.

Additional information

Dedicated to Louis Nadjo and Roland Contant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Yin, P., Haso, F. et al. Soft Matter Approaches for Enhancing the Catalytic Capabilities of Polyoxometalate Clusters. J Clust Sci 25, 695–710 (2014). https://doi.org/10.1007/s10876-013-0643-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0643-7

Keywords

Navigation