Skip to main content

Advertisement

Log in

Growth Orientation of the Mechanosynthesized Fluorapatite-Based Composite Nanopowders: Influence of Subsequent Thermal Treatment

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Growth orientation of fluorapatite–zirconia nanopowders was investigated after mechanical activation and thermal annealing process in the range of 600–1,300 °C for 1 h. Results revealed that during heating of the composite nanopowders the transition of the monoclinic zirconia to tetragonal form and its stabilization by calcium fluoride originating from the decomposition of fluorapatite as well as the formation of a solid solution of calcium fluoride in zirconia occurred. The influence of annealing on the growth orientation of fluorapatite–zirconia composite nanopowders indicated that the crystal growth of fluorapatite was preferentially accentuated on the (002) face in the direction of the crystallographic c-axis after heat treatment. Based on FE–SEM observations, the experimental outcome was composed of both agglomerates and fine particles (~33 nm) after 600 °C, while annealing of the sample at 1,300 °C demonstrated the occurrence of abnormal grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. S. J. Kalita, A. Bhardwaj, and H. A. Bhatt (2007). Mater. Sci. Eng. C 27, 441.

    Article  CAS  Google Scholar 

  2. H. W. Kim, L. H. Li, Y. H. Koh, J. C. Knowles, and H. E. Kim (2004). J. Am. Ceram. Soc. 87, 1939.

    Article  CAS  Google Scholar 

  3. M. H. Fathi and E. Mohammadi Zahrani (2009). J. Cryst. Growth 311, 1392.

    Article  CAS  Google Scholar 

  4. B. Viswanath and N. Ravishankar (2006). Scripta Mater. 55, 863.

    Article  CAS  Google Scholar 

  5. R. Ramachandra Rao and T. S. Kannan (2002). Mater. Sci. Eng. C 20, 187.

    Article  Google Scholar 

  6. Z. Evis (2007). Ceram. Int. 33, 987.

    Article  CAS  Google Scholar 

  7. S. Nath, R. Tripathi, and B. Basu (2009). Mater. Sci. Eng. C 29, 97.

    Article  CAS  Google Scholar 

  8. E. Adolfsson, N. Nygren, and L. Hermansson (1999). J. Am. Ceram. Soc. 82, 2909.

    Article  CAS  Google Scholar 

  9. H. W. Kim, Y. M. Kong, Y. H. Koh, and H. E. Kim (2003). J. Am. Ceram. Soc. 86, 2019.

    Article  CAS  Google Scholar 

  10. F. Ben Ayed and J. Bouaziz (2008). J. Eur. Ceram. Soc. 28, 1995.

    Article  CAS  Google Scholar 

  11. C. L. De Castro and B. S. Mitchell, in M. I. Baraton (ed.) Nanoparticles from mechanical attrition (American Scientific Publishers, Valencia, 2002), p. 1.

  12. C. Suryanarayana (2001). Prog. Mater Sci. 46, 1.

    Article  CAS  Google Scholar 

  13. B. Nasiri-Tabrizi and A. Fahami (2013). Ceram. Int. 39, 4329.

    Article  CAS  Google Scholar 

  14. B. Nasiri-Tabrizi and A. Fahami (2013). Ceram. Int. 39, 5125.

    Article  CAS  Google Scholar 

  15. B. Nasiri-Tabrizi and A. Fahami (2013). doi:10.1016/j.ceramint.2013.02.072.

  16. M. Wei, J. H. Evans, T. Bostrom, and L. Grondahl (2003). J. Mater. Sci.—Mater. Med. 14, 311.

    Article  CAS  Google Scholar 

  17. E. Landi, A. Tampieri, G. Celotti, and S. Sprio (2000). J. Eur. Ceram. Soc. 20, 2377.

    Article  CAS  Google Scholar 

  18. C. C. Silva, M. A. Valente, M. P. F. Graça, and A. S. B. Sombra (2004). Solid State Sci. 6, 1365.

    Article  CAS  Google Scholar 

  19. B. Nasiri-Tabrizi, P. Honarmandi, R. Ebrahimi-Kahrizsangi, and P. Honarmandi (2009). Mater. Lett. 63, 543.

    Article  CAS  Google Scholar 

  20. Y. M. Sung and D. H. Kim (2003). J. Cryst. Growth 254, 411.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to research affairs of Islamic Azad University, Najafabad Branch for supporting of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahman Nasiri-Tabrizi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasiri-Tabrizi, B., Fahami, A. Growth Orientation of the Mechanosynthesized Fluorapatite-Based Composite Nanopowders: Influence of Subsequent Thermal Treatment. J Clust Sci 24, 1213–1221 (2013). https://doi.org/10.1007/s10876-013-0611-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0611-2

Keywords

Navigation