Skip to main content

Green Synthesis of Silver Nanoparticles Using Acacia farnesiana (Sweet Acacia) Seed Extract Under Microwave Irradiation and Their Biological Assessment

Abstract

In the present study, Acacia farnesiana (Sweet acacia) seed extract is used to reduce Ag+ → Ag0 under microwave irradiation. The formation of silver nanoparticles (AgNPs) is monitored by recording the UV–Vis absorption spectra for surface plasmon resonance (SPR) peak at ~450 nm. The absorbance of SPR increases linearly with increasing temperature of the reaction mixture. Rapid reduction of silver ions occurred to form AgNPs, 80–90 % yield in about 150 s. A marginal decrease in pH and increase in solution potential (E) of the reaction mixture during the formation of AgNPs are in agreement with the proposed mechanism. XRD pattern of the AgNPs agree with the fcc structure of Ag metal, and the calculated crystallite size is ~17 nm. FT-IR and solid-state 13C NMR spectra indicate the functional groups of flavonones and terpenoids (biomolecules from plant extract) which are adsorbed on AgNPs, thereby the present method led to in situ biofunctionalization/bio-capping of AgNPs. TG analysis shows the thermal decomposition of these plant residues present on AgNPs at about 250 °C. The spherical shape of the particles with a diameter (ϕ) in the range of ~15–20 nm is evident from FE-SEM image. Elemental analysis by EDX analysis confirms the presence of Ag as the only major element. The in vitro antibacterial screening of AgNPs shows that these bio-capped AgNPs have higher inhibitory action for E. coli and S. aureus followed by B. subtilis and P. aeruginosa. In addition, AgNPs show very good antioxidant property.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra (2009). Colloids Surf. A 339, 134.

    Article  CAS  Google Scholar 

  2. T. Tuutijarvi, J. Lu, M. Sillanpaa, and G. Chen (2009). J. Hazard. Mater. 166, 1415.

    Article  CAS  Google Scholar 

  3. T. Tuutijarvi, J. Lu, M. Sillanpaa, and G. Chen (2010). J. Environ. Eng. 136, 897.

    Article  CAS  Google Scholar 

  4. S. Kotthaus, B. H. Gunther, R. Hang, and H. Schafer (1997). IEEE Trans Compan. Packag. Manuf. Technol. Part A 20, 15.

    Article  CAS  Google Scholar 

  5. G. Cao Nanostructures and Nanomaterials: Synthesis, Properties and Applications (Imperial College Press, London, 2004).

    Book  Google Scholar 

  6. W. Zangh and G. Wang (2003). Chem. Mater. 31, 42.

    Google Scholar 

  7. T. Klaus-joerger, R. Jorger, E. Olsson, and C. G. Granqvist (2001). Trends Biotechnol. 19, 15.

    Article  CAS  Google Scholar 

  8. Willems and van den Wildenberg, Roadmap Report on Nanoparticles (W&W. Espana sl., Barcelona, 2005).

  9. C. Krishnaraj, E. G. Jagan, S. Rajashekar, P. Selvakumar, P. T. Kalaichelvan, and N. Mohan (2010). Collids surf. B 76, 50.

    Article  CAS  Google Scholar 

  10. W. Chen, W. Cai, L. Zang, and G. Wang (2001). J. Colloid Interface Sci. 238, 291.

    Article  CAS  Google Scholar 

  11. A. Frattini, N. Pellegri, D. Nicastro, and O. de Sanctis (2005). Mater. Chem. Phys. 94, 148.

    Article  CAS  Google Scholar 

  12. B. Knoll and F. Keilmann (1999). Nature 399, 134.

    Article  CAS  Google Scholar 

  13. S. Sengupta, D. Eavarone, I. Capila, G. L. Zhao, N. Watson, and T. Kiziltepe (2005). Nature 436, 568.

    Article  CAS  Google Scholar 

  14. S. Sinha, I. Pan, P. Chanda, and S. K. Sen (2009). J. Appl. Biosci. 19, 1113.

    Google Scholar 

  15. D. S. Goodsell Bionanotechnology (Wiley-Liss Publication, New Jersey, 2004).

    Book  Google Scholar 

  16. A. R. Vilchis-Nestor, V. Sanchez-Mendieta, M. A. Camacho-Lopez, R. M. Gomez-Espinosa, M. A. Camacho-Lopez, and J. A. Arenas-Alatorre (2008). Mater. Lett. 62, 3103.

    Article  CAS  Google Scholar 

  17. S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry (2004). J. Colloid Interface Sci. 275, 496.

    Article  CAS  Google Scholar 

  18. N. H. H. A. Bakar, J. Ismail, and M. A. Bakar (2007). Mater. Chem. Phys. 104, 276.

    Article  Google Scholar 

  19. S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry (2006). Biotechnol. Prog. 22, 577.

    Article  CAS  Google Scholar 

  20. B. Harekrishna, K. B. Dipak, P. S. Gobinda, S. Priyanka, P. D. Sankar, and A. Misra (2009). Colloids Surf. A 339, 134.

    Article  Google Scholar 

  21. D. Raghunandan, B. D. Mahesh, S. Basavaraja, S. D. Balaji, S. Y. Manjunath, and A. Venkatraman (2011). J. Nanopart. Res. 13, 2021.

    Article  CAS  Google Scholar 

  22. T. C. Prathna, N. Chandrasekaran, A. M. Raichur, and A. Mukherjee (2011). Colloids Surf. B 82, 152.

    Article  CAS  Google Scholar 

  23. K. Raja, A. Saravanakumar, and R. Vijayakumar (2012). Spectrochimica Acta Part A 97, 490.

    Article  CAS  Google Scholar 

  24. J. Haung, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, and C. Chen (2007). Nanotechnology 18, 104.

    Google Scholar 

  25. J. L. Gardea-Torresdey, J. G. Parsons, K. Dokken, J. Peralta-Videa, H. E. Troiani, P. Santiago, and M. Jose-Yacaman (2002). Nano Lett. 2, 397.

    Article  CAS  Google Scholar 

  26. J. L. Gardea-Torresdey, E. Gomez, J. Peralta-Videa, J. G. Parsons, H. E. Troiani, and M. Jose-Yacaman (2003). Langmuir 19, 1357.

    Article  CAS  Google Scholar 

  27. G. Garavitoa, J. Rincóna, L. Arteagaa, Y. Hataa, G. Bourdyb, A. Gimenezc, R. Pinzóna, and E. Deharo (2006). J. Ethnopharmacol. 107, 460.

    Article  Google Scholar 

  28. A. Braca, D. Tommasi Nunziatina, L. D. Bari, P. Cosimo, P. Mateo, and I. Morelli (2001). J. Nat. Prod. 64, 892.

    Article  CAS  Google Scholar 

  29. A. M. Vijesh, A. M. Isloor, S. K. Peethambar, K. N. Shivananda, T. A. Nishitha, and A. Isloor (2011). Eur. J. Med. Chem. 46, 5591.

    Article  CAS  Google Scholar 

  30. G. D. Gnanajobitha, G. Annadurai, and C. Kannan (2012). IJPSR 3, 323.

    CAS  Google Scholar 

  31. S. Yallappa, J. Manjanna, M. A. Sindhe, N. D. Satyanarayan, S. N. Pramod, and K. Nagaraja (2013). Spectrochimica Acta A. 110, 108.

    Article  CAS  Google Scholar 

  32. J. Y. Song and B. S. Kim (2009). Bioprocess Biosyst. Eng. 32, 79.

    Article  Google Scholar 

  33. H. Y. Lin and C. C. Chou (2004). Food Res. Int. 37, 883.

    Article  CAS  Google Scholar 

  34. J. Banerjee and R. T. Narendhirakannan (2011). Digest J. Nanomaterials Biostructures 6, 961.

    Google Scholar 

  35. R. W. Raut, N. S. Kollekar, J. R. Lakkakula, V. D. Mendhulkar, and S. B. Kashid (2010). Nano-Micro Lett. 2, 106.

    Article  CAS  Google Scholar 

  36. P. Dibrov, J. Dzioba, K. K. Gosink, and C. C. Hase (2002). Antimicrob. Agents Chemother. 46, 2668.

    Article  CAS  Google Scholar 

  37. I. Sondi and B. Salopek-Sondi (2004). J. Colloid Interface Sci. 275, 177.

    Article  CAS  Google Scholar 

  38. K. B. Holt and A. J. Bard (2005). Biochemistry 44, 13214.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Michel Raj of St. Joseph College, Bangalore and Dr. Harish C Barshilia of NAL, Bangalore for providing XRD and FE-SEM data, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Manjanna.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yallappa, S., Manjanna, J., Peethambar, S.K. et al. Green Synthesis of Silver Nanoparticles Using Acacia farnesiana (Sweet Acacia) Seed Extract Under Microwave Irradiation and Their Biological Assessment. J Clust Sci 24, 1081–1092 (2013). https://doi.org/10.1007/s10876-013-0599-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0599-7

Keywords

  • Acacia farnesiana
  • Silver nanoparticles
  • Bioreduction
  • Antioxidant property
  • Antibacterial activity