Abstract
In the present study, Acacia farnesiana (Sweet acacia) seed extract is used to reduce Ag+ → Ag0 under microwave irradiation. The formation of silver nanoparticles (AgNPs) is monitored by recording the UV–Vis absorption spectra for surface plasmon resonance (SPR) peak at ~450 nm. The absorbance of SPR increases linearly with increasing temperature of the reaction mixture. Rapid reduction of silver ions occurred to form AgNPs, 80–90 % yield in about 150 s. A marginal decrease in pH and increase in solution potential (E) of the reaction mixture during the formation of AgNPs are in agreement with the proposed mechanism. XRD pattern of the AgNPs agree with the fcc structure of Ag metal, and the calculated crystallite size is ~17 nm. FT-IR and solid-state 13C NMR spectra indicate the functional groups of flavonones and terpenoids (biomolecules from plant extract) which are adsorbed on AgNPs, thereby the present method led to in situ biofunctionalization/bio-capping of AgNPs. TG analysis shows the thermal decomposition of these plant residues present on AgNPs at about 250 °C. The spherical shape of the particles with a diameter (ϕ) in the range of ~15–20 nm is evident from FE-SEM image. Elemental analysis by EDX analysis confirms the presence of Ag as the only major element. The in vitro antibacterial screening of AgNPs shows that these bio-capped AgNPs have higher inhibitory action for E. coli and S. aureus followed by B. subtilis and P. aeruginosa. In addition, AgNPs show very good antioxidant property.
This is a preview of subscription content, access via your institution.








References
H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra (2009). Colloids Surf. A 339, 134.
T. Tuutijarvi, J. Lu, M. Sillanpaa, and G. Chen (2009). J. Hazard. Mater. 166, 1415.
T. Tuutijarvi, J. Lu, M. Sillanpaa, and G. Chen (2010). J. Environ. Eng. 136, 897.
S. Kotthaus, B. H. Gunther, R. Hang, and H. Schafer (1997). IEEE Trans Compan. Packag. Manuf. Technol. Part A 20, 15.
G. Cao Nanostructures and Nanomaterials: Synthesis, Properties and Applications (Imperial College Press, London, 2004).
W. Zangh and G. Wang (2003). Chem. Mater. 31, 42.
T. Klaus-joerger, R. Jorger, E. Olsson, and C. G. Granqvist (2001). Trends Biotechnol. 19, 15.
Willems and van den Wildenberg, Roadmap Report on Nanoparticles (W&W. Espana sl., Barcelona, 2005).
C. Krishnaraj, E. G. Jagan, S. Rajashekar, P. Selvakumar, P. T. Kalaichelvan, and N. Mohan (2010). Collids surf. B 76, 50.
W. Chen, W. Cai, L. Zang, and G. Wang (2001). J. Colloid Interface Sci. 238, 291.
A. Frattini, N. Pellegri, D. Nicastro, and O. de Sanctis (2005). Mater. Chem. Phys. 94, 148.
B. Knoll and F. Keilmann (1999). Nature 399, 134.
S. Sengupta, D. Eavarone, I. Capila, G. L. Zhao, N. Watson, and T. Kiziltepe (2005). Nature 436, 568.
S. Sinha, I. Pan, P. Chanda, and S. K. Sen (2009). J. Appl. Biosci. 19, 1113.
D. S. Goodsell Bionanotechnology (Wiley-Liss Publication, New Jersey, 2004).
A. R. Vilchis-Nestor, V. Sanchez-Mendieta, M. A. Camacho-Lopez, R. M. Gomez-Espinosa, M. A. Camacho-Lopez, and J. A. Arenas-Alatorre (2008). Mater. Lett. 62, 3103.
S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry (2004). J. Colloid Interface Sci. 275, 496.
N. H. H. A. Bakar, J. Ismail, and M. A. Bakar (2007). Mater. Chem. Phys. 104, 276.
S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry (2006). Biotechnol. Prog. 22, 577.
B. Harekrishna, K. B. Dipak, P. S. Gobinda, S. Priyanka, P. D. Sankar, and A. Misra (2009). Colloids Surf. A 339, 134.
D. Raghunandan, B. D. Mahesh, S. Basavaraja, S. D. Balaji, S. Y. Manjunath, and A. Venkatraman (2011). J. Nanopart. Res. 13, 2021.
T. C. Prathna, N. Chandrasekaran, A. M. Raichur, and A. Mukherjee (2011). Colloids Surf. B 82, 152.
K. Raja, A. Saravanakumar, and R. Vijayakumar (2012). Spectrochimica Acta Part A 97, 490.
J. Haung, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, and C. Chen (2007). Nanotechnology 18, 104.
J. L. Gardea-Torresdey, J. G. Parsons, K. Dokken, J. Peralta-Videa, H. E. Troiani, P. Santiago, and M. Jose-Yacaman (2002). Nano Lett. 2, 397.
J. L. Gardea-Torresdey, E. Gomez, J. Peralta-Videa, J. G. Parsons, H. E. Troiani, and M. Jose-Yacaman (2003). Langmuir 19, 1357.
G. Garavitoa, J. Rincóna, L. Arteagaa, Y. Hataa, G. Bourdyb, A. Gimenezc, R. Pinzóna, and E. Deharo (2006). J. Ethnopharmacol. 107, 460.
A. Braca, D. Tommasi Nunziatina, L. D. Bari, P. Cosimo, P. Mateo, and I. Morelli (2001). J. Nat. Prod. 64, 892.
A. M. Vijesh, A. M. Isloor, S. K. Peethambar, K. N. Shivananda, T. A. Nishitha, and A. Isloor (2011). Eur. J. Med. Chem. 46, 5591.
G. D. Gnanajobitha, G. Annadurai, and C. Kannan (2012). IJPSR 3, 323.
S. Yallappa, J. Manjanna, M. A. Sindhe, N. D. Satyanarayan, S. N. Pramod, and K. Nagaraja (2013). Spectrochimica Acta A. 110, 108.
J. Y. Song and B. S. Kim (2009). Bioprocess Biosyst. Eng. 32, 79.
H. Y. Lin and C. C. Chou (2004). Food Res. Int. 37, 883.
J. Banerjee and R. T. Narendhirakannan (2011). Digest J. Nanomaterials Biostructures 6, 961.
R. W. Raut, N. S. Kollekar, J. R. Lakkakula, V. D. Mendhulkar, and S. B. Kashid (2010). Nano-Micro Lett. 2, 106.
P. Dibrov, J. Dzioba, K. K. Gosink, and C. C. Hase (2002). Antimicrob. Agents Chemother. 46, 2668.
I. Sondi and B. Salopek-Sondi (2004). J. Colloid Interface Sci. 275, 177.
K. B. Holt and A. J. Bard (2005). Biochemistry 44, 13214.
Acknowledgments
The authors are thankful to Dr. Michel Raj of St. Joseph College, Bangalore and Dr. Harish C Barshilia of NAL, Bangalore for providing XRD and FE-SEM data, respectively.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yallappa, S., Manjanna, J., Peethambar, S.K. et al. Green Synthesis of Silver Nanoparticles Using Acacia farnesiana (Sweet Acacia) Seed Extract Under Microwave Irradiation and Their Biological Assessment. J Clust Sci 24, 1081–1092 (2013). https://doi.org/10.1007/s10876-013-0599-7
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10876-013-0599-7
Keywords
- Acacia farnesiana
- Silver nanoparticles
- Bioreduction
- Antioxidant property
- Antibacterial activity