Skip to main content
Log in

Carbon Doping of Defect Sites in Stone–Wales Defective Boron-nitride Nanotubes: A Density Functional Theory Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We have performed a density functional theory study to investigate the effect of carbon doping on Stone–Wales (SW) defective sites in the armchair (4, 4), (5, 5) and (6, 6) BNNTs, in order to remove structural instability induced by homonuclear N–N and B–B bonds. Two different orientations of SW defect are considered, parallel and diagonal, and then C atoms are doped at different positions of the defect sites. In general, it seems that among the considered arrangements, C atoms prefer to be substituted for the homonuclear B–B bond. The larger HOMO–LUMO band gaps for the most stable configurations indicate that C doping at B–B sites is kinetically more favorable than the other ones. According to calculated nuclear quadrupole resonance (NQR) parameters as a result of C-doping on SW defective sites, the quadrupole coupling constants (C Q ) of boron nuclei at defective sites decrease by about 0.508–1.406 MHz while 14N C Q of the defective sites, except for N8, increases. Interestingly, C Q of the N sites directly connected to dopant sites has maximum increment (0.612–2.596 MHz) while C Q of the N sites belonging to the B2N3 pentagon is undergone to some minor changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. J. Stone and D. J. Wales (1986). Chem. Phys. Lett. 128, 501.

    Article  CAS  Google Scholar 

  2. M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham, and H. Park (2001). Science 291, 283.

    Article  CAS  Google Scholar 

  3. T. Maltezopoulos, A. Kubetzka, M. Morgenstern, R. Wiesendanger, S. G. Lemay, and C. Dekker (2003). Appl. Phys. Lett. 83, 1011.

    Article  CAS  Google Scholar 

  4. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima (2004). Nature 430, 870.

    Article  CAS  Google Scholar 

  5. M. B. Nardelli, B. I. Yakobson, and R. Bernholc (1998). J. Phys. Rev. B 57, 4277.

    Article  Google Scholar 

  6. Y. Li, Z. Zhou, D. Golberg, Y. Bando, P. V. R. Schleyer, and Z. Chen (2008). J. Phys. Chem. C 112, 1365.

    Article  CAS  Google Scholar 

  7. H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen (2000). Phys. Rev. Lett. 84, 2917.

    Article  CAS  Google Scholar 

  8. A. Hirsch (2002). Angew. Chem. Int. Ed. 41, 1853.

    Article  CAS  Google Scholar 

  9. J. C. Charlier (2002). Acc. Chem. Res. 35, 1063.

    Article  CAS  Google Scholar 

  10. P. C. P. Watts, W. K. Hsu, H. W. Kroto, and D. R. M. Walton (2003). Nano. Lett. 3, 549.

    Article  CAS  Google Scholar 

  11. A. Rubio, J. L. Corkill, and M. L. Cohen (1994). Phys. Rev. B 49, 5081.

    Article  CAS  Google Scholar 

  12. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl (1995). Science 269, 966.

    Article  CAS  Google Scholar 

  13. Z. Zhou, J. Zhao, Z. Chen, and P. V. R. Schleyer (2006). J. Phys. Chem. B 110, 25678.

    Article  CAS  Google Scholar 

  14. Z. Zhou, J. Zhao, Z. Chen, X. Gao, J. P. Lu, P. V. R. Schleyer, and C.-K. Yang (2006). J. Phys. Chem. B 110, 2529.

    Article  CAS  Google Scholar 

  15. H. F. Bettinger, T. Dumitrica, G. E. Scuseria, and B. I. Yakobson (2002). Phys. Rev. B 65, 041406.

    Article  Google Scholar 

  16. R. Z. Ma, D. Golberg, Y. Bando, and T. Sasaki (2004). Philos. Trans. R. Soc. Lond Ser A 362, 2161.

    Article  CAS  Google Scholar 

  17. D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, and H. Yusa (1996). Appl. Phys. Lett. 69, 2045.

    Article  CAS  Google Scholar 

  18. Y. Saito and M. Maida (1999). J. Phys. Chem. A 103, 1291.

    Article  CAS  Google Scholar 

  19. W. Chen, Y. Li, G. Yu, Z. Zhou, and Z. Chen (2009). J. Chem. Theory Comput. 5, 3088.

    Article  CAS  Google Scholar 

  20. X. Blase, A. D. Vita, J.-C. Charlier, and R. Car (1998). Phys. Rev. Lett. 80, 1666.

    Article  CAS  Google Scholar 

  21. W. An, X. Wu, J. L. Yang, and X. C. Zeng (2007). J. Phys. Chem. C 111, 14105.

    Article  CAS  Google Scholar 

  22. J. K. Burdett (1983). J. Phys. Chem. 87, 4368.

    Article  CAS  Google Scholar 

  23. S. Lassoued, R. Gautier, A. Boutarfaia, and J.-F. Halet (2010). J. Organomet. Chem. 95, 983.

    Google Scholar 

  24. X. Rocquefelte, S. E. Boulfelfel, M. Ben Yahia, J. Bauer, J.-Y. Saillard, and J.-F. Halet (2005). Angew. Chem. Int. Ed. 44, 7542.

    Article  CAS  Google Scholar 

  25. P. Piquini, R. J. Baierle, T. M. Schmidt, and A. Fazzio (2005). Nanotechnology 16, 827.

    Article  CAS  Google Scholar 

  26. T. M. Schmidt, R. J. Baierle, P. Piquini, and A. Fazzio (2003). Phys. Rev. B 67, 113407.

    Article  Google Scholar 

  27. Z. Zhou, J. Zhao, Z. Chen, X. Gao, T. Yan, B. Wen, and P. V. R. Schleyer (2006). J. Phys. Chem. B 110, 13363.

    Article  CAS  Google Scholar 

  28. X. J. Wu, J. L. Yang, J. G. Hou, and Q. S. Zhu (2006). J. Chem. Phys. 124, 54706.

    Article  Google Scholar 

  29. J. Zhang, K. P. Loh, J. Zheng, M. B. Sullivan, and P. Wu (2007). Phys. Rev. B 75, 245301.

    Article  Google Scholar 

  30. R. J. Baierlea, T. M. Schmidt, and A. Fazzioc (2007). Solid State Commun. 142, 49.

    Article  Google Scholar 

  31. R. Q. Wu, L. Liu, G. W. Peng, and Y. P. Feng (2005). Appl. Phys. Lett. 86, 122510.

    Article  Google Scholar 

  32. R. J. Baierle, P. Piquini, T. M. Schmidt, and A. Fazzio (2006). J. Phys. Chem. B 110, 21184.

    Article  CAS  Google Scholar 

  33. G. Kim, J. Park, and S. Hong (2012). Chem. Phys. Lett. 522, 79.

    Article  CAS  Google Scholar 

  34. Y. Miyamoto, A. Rubio, S. Berber, M. Yoon, and D. Tománek (2004). Phys. Rev. B 69, 121413.

    Article  Google Scholar 

  35. M. Ishigami, H. J. Choi, S. Aloni, S. G. Louie, M. L. Cohen, and A. Zettl (2004). Phys. Rev. Lett. 93, 196803.

    Article  Google Scholar 

  36. V. Skákalová, J. Maultzsch, Z. Osváth, L. P. Biró, and S. Roth (2007). Phys. Status Solid. 1, 138.

    Google Scholar 

  37. S. K. Doorn, L. Zheng, M. J. O’Connell, Y. Zhu, S. Huang, and J. Liu (2005). J. Phys. Chem. B 109, 3751.

    Article  CAS  Google Scholar 

  38. R. Ghafouri and M. Anafcheh (2013). Superlattices Microstruct. 55, 33.

    Article  CAS  Google Scholar 

  39. T. P. Das and E. L. Han Nuclear quadrupole resonance spectroscopy (Academic Press, New York, 1958).

    Google Scholar 

  40. M. Anafcheh and R. Ghafouri (2012). Phys. E 45, 183.

    Article  CAS  Google Scholar 

  41. M. Anafcheh and R. Ghafouri (2012). Solid State Sci. 14, 381.

    Article  CAS  Google Scholar 

  42. M. Mirzaei and N. L. Hadipour (2008). Phys. E 40, 800.

    Article  CAS  Google Scholar 

  43. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople Gaussian 98 (Gaussian. Inc., Pittsburgh, 1998).

  44. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  45. P. C. Hariharan and J. A. Pople (1974). Mol. Phys. 27, 209.

    Article  CAS  Google Scholar 

  46. Y. Zhang, A. Wu, X. Xu, and Y. Yan (2007). J. Phys. Chem. A 111, 9431.

    Article  CAS  Google Scholar 

  47. P. Pyykkö (2001). Mol. Phys. 99, 1617.

    Article  Google Scholar 

  48. M. Mirzaei (2009). Phys. E 41, 883.

    Article  CAS  Google Scholar 

  49. S.-P. Ju, Y.-C. Wang, and T.-W. Lien (2011). Nanoscale Res. Lett. 6, 160.

    Article  Google Scholar 

  50. J.-C. Charlier, X. Blase, A. De Vita, and R. Car (1999). Appl. Phys. A 68, 267.

    Article  CAS  Google Scholar 

  51. D. Srivastava, M. Menon, and K. Cho (2001). Phys. Rev. B 63, 195413.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghafouri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 236 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anafcheh, M., Ghafouri, R. Carbon Doping of Defect Sites in Stone–Wales Defective Boron-nitride Nanotubes: A Density Functional Theory Study. J Clust Sci 24, 865–879 (2013). https://doi.org/10.1007/s10876-013-0584-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0584-1

Keywords

Navigation