Skip to main content
Log in

Photoluminescence Stability of Colloidal CdTe Quantum Dots in Various Buffer Solutions

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Mercaptoacetic acid-capped CdTe quantum dots (QDs) are potential luminescent markers for biological analysis. The photoluminescence (PL) stability of the QDs in buffer solutions determines their practicability as markers in electrophoresis. The stability of the QDs was thus investigated in electrophoresis buffers including tris–borate–ethylenediaminetetraacetic acid (TBE) and tris–acetate–ethylenediaminetetraacetic acid (TAE). The QDs were completely unstable in high-concentrated buffers (≥0.1×). In the case of low concentrations (≤0.07× for TAE, ≤0.035× for TBE), the PL intensity of the QDs in two kinds of buffers decreased with increasing buffer concentrations. A red-shifted PL peak wavelength and PL intensity fluctuation were observed after dispersing the QDs in diluted TAE buffer solutions with concentrations of ≤0.07× for long time. According to the Stern–Volmer plots of PL degradation, the factors leading to the degradation were complicated, which was attributed to the actions of the components including tris, borate or acetic acid, and ethylenediaminetetraacetic acid as well as their mutual effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi (2005). Nat. Mater. 4, 435.

    Article  CAS  Google Scholar 

  2. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss (2005). Science 307, 538.

    Article  CAS  Google Scholar 

  3. P. Zrazhevskiy, M. Sena, and X. Gao (2010). Chem. Soc. Rev. 39, 4326.

    Article  CAS  Google Scholar 

  4. P. Zrazhevskiy and X. Gao (2009). Nano Today 4, 414.

    Article  CAS  Google Scholar 

  5. A. P. Alivisatos (1996). Science 271, 933.

    Article  CAS  Google Scholar 

  6. W. C. W. Chan and S. M. Nie (1998). Science 281, 2016.

    Article  CAS  Google Scholar 

  7. J. A. Kloepfer, S. E. Bradforth, and J. L. Nadeau (2005). J. Phys. Chem. B 109, 9996.

    Article  CAS  Google Scholar 

  8. M. T. Fernandez-Arguelles, W. J. Jin, J. M. Costa-Fernandez, R. Pereiro, and A. Sanz-Medel (2005). Anal. Chim. Acta 549, 20.

    Article  Google Scholar 

  9. N. Gomez, J. O. Winter, F. Shieh, A. E. Saunders, B. A. Korgel, and C. E. Schmidt (2005). Talanta 67, 462.

    Article  CAS  Google Scholar 

  10. Z. Wang, M. Lu, X. Wang, R. Yin, Y. Song, X. C. Le, and H. Wang (2009). Anal. Chem. 81, 10285.

    Article  CAS  Google Scholar 

  11. A. Fu, C. M. Micheel, J. Cha, H. Chang, H. Yang, and A. P. Alivisatos (2004). J. Am. Chem. Soc. 126, 10832.

    Article  CAS  Google Scholar 

  12. B. Scholl, H. Y. Liu, B. R. Long, O. J. T. McCarty, T. O’Hare, B. J. Druker, and T. Q. Vu (2009). ACS Nano 3, 1318.

    Article  CAS  Google Scholar 

  13. J. H. Kim, S. Chaudhary, and M. Ozkan (2007). Nanotechnology 18, 195105.

    Article  Google Scholar 

  14. H. Kuang, Y. Zhao, W. Ma, L. Xu, L. Wang, and C. Xu (2011). Trends Anal. Chem. 30, 10.

    Article  Google Scholar 

  15. V. V. Breus, C. D. Heyes, and G. U. Nienhaus (2007). J. Phys. Chem. C 111, 18589.

    Article  CAS  Google Scholar 

  16. Z. Tang, Y. Wang, S. Shanbhag, and N. A. Kotov (2006). J. Am. Chem. Soc. 128, 7036.

    Article  CAS  Google Scholar 

  17. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller (2002). J. Phys. Chem. B 106, 7177.

    Article  CAS  Google Scholar 

  18. Z. Yuan, A. Zhang, Y. Cao, J. Yang, Y. Zhu, and P. Yang (2011). J. Fluoresc. 22, 121.

    Article  Google Scholar 

  19. W. W. Yu, L. Qu, W. Guo, and X. Peng (2003). Chem. Mater. 15, 2854.

    Article  CAS  Google Scholar 

  20. J. N. Demas and G. A. Grosby (1971). J. Phys. Chem. 75, 991.

    Article  Google Scholar 

  21. R. F. Kubin and A. N. Fletcher (1982). J. Lumin. 27, 455.

    Article  Google Scholar 

  22. S. Xu, C. Wang, Q. Xu, R. Li, H. Shao, H. Zhang, M. Fang, W. Lei, and Y. Cui (2010). J. Phys. Chem. C 114, 14319.

    Article  CAS  Google Scholar 

  23. C. Dong, H. Qian, N. Fang, and J. Ren (2006). J. Phys. Chem. B110, 11069.

    Google Scholar 

  24. Q. Zeng, X. Kong, Y. Sun, Y. Zhang, L. Tu, J. Zhao, and H. Zhang (2008). J. Phys. Chem. C 112, 8587.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for Taishan Scholars, projects from National Science Foundation of China (21071061), Natural Science Foundation of Shandong Province (ZR2010EZ001 and ZR2011EL029), Outstanding Young Scientists Foundation Grant of Shandong Province (BS2010CL004 and BS2012CL004), the Research Foundation from University of Jinan (XKY0911 and XKY1006), and the Doctor Foundation from University of Jinan (XBS1015 and XBS1027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, A., Liu, N., Cao, Y. et al. Photoluminescence Stability of Colloidal CdTe Quantum Dots in Various Buffer Solutions. J Clust Sci 24, 427–437 (2013). https://doi.org/10.1007/s10876-013-0566-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0566-3

Keywords

Navigation