Skip to main content
Log in

Solvothermal Synthesis and Characterization of PbSe Nanostructures with the Aid of Schiff-base Ligand

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, Pb(II)N,N-bis(salicylidene)-ethylenediamine; [Pb(salen)]; was applied as lead precursor to synthesis PbSe nanostructures. Besides [Pb(salen)], SeCl4 and reducing agents like N2H4·H2O have been employed for the production of PbSe nanostructures via a solvothermal route at 180 °C for 3 h in propylene glycol. The effect of preparation factors such as temperature, reaction time, and surfactant on the morphology of PbSe nanostructures was investigated. The experimental results indicated that PbSe synthesized at 150 and 210 °C was composed of agglomerated particles. On the other hand, the use of KBH4 as reducing agent led to produce PbSe with higher particle size and agglomeration. The as-prepared PbSe nanostructures were characterized by XRD, SEM, TEM, EDS, and FT-IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. W. Wise (2000). Acc. Chem. Res. 33, 773.

    Article  CAS  Google Scholar 

  2. M. T. Harrison, S. V. Kershaw, M. G. Burt, A. L. Rogach, A. Kornowski, A. Eychmuller, and H. Weller (2000). Pure Appl. Chem. 73, 295.

    Article  Google Scholar 

  3. R. D. Schaller and V. I. Klimov (2004). Phys. ReV. Lett. 92, 186601.

    Article  CAS  Google Scholar 

  4. R. Ellinson, M. Beard, J. Johnson, P. Yu, O. Micic, A. Nozik, A. Shabaev, and A. Efros (2005). Nano Lett. 5, 865.

    Article  Google Scholar 

  5. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, J. D. E. Klem, L. Levina, and E. H. Sargent (2005). Nat. Mater. 4, 138.

    Article  CAS  Google Scholar 

  6. J. M. Pietryga, R. D. Schaller, D. Weder, M. H. Stewart, V. I. Kilmov, and J. A. Hollingsworth (2004). J. Am. Chem. Soc. 126, 11752.

    Article  CAS  Google Scholar 

  7. D. V. Talapin and C. B. Murray (2005). Science 310, 86.

    Article  CAS  Google Scholar 

  8. B. X. Li, Y. Xie, Y. Xu, C. Z. Wu, and Z. Q. Li (2006). J. Solid State Chem. 179, 56.

    Article  CAS  Google Scholar 

  9. H. Tong, Y. J. Zhu, L. X. Yang, L. Li, and L. Zhang (2006). Angew. Chem. Int. Ed. 45, 7739.

    Article  CAS  Google Scholar 

  10. Y. F. Liu, J. B. Cao, J. H. Zeng, C. Li, Y. T. Qian, and S. Y. Zhang (2003). Eur. J. Inorg. Chem. 4, 644.

    Article  Google Scholar 

  11. W. Z. Wang, Y. Geng, Y. T. Qian, M. R. Ji, and X. M. Liu (1998). Adv. Mater. 10, 1479.

    Article  CAS  Google Scholar 

  12. J. J. Zhu, H. Wang, S. Xu, and H. Y. Chen (2002). Langmuir 18, 3306.

    Article  CAS  Google Scholar 

  13. A. J. Houtepen, R. Koole, D. Vanmaekelbergh, J. Meeldijk, and S. G. Hickey (2006). J. Am. Chem. Soc. 128, 6792.

    Article  CAS  Google Scholar 

  14. W. G. Lu, J. Y. Fang, Y. Ding, and Z. L. Wang (2005). J. Phys. Chem. B 109, 19219.

    Article  CAS  Google Scholar 

  15. X. Q. Wang, G. C. Xi, Y. K. Liu, and Y. T. Qian (2008). Cryst. Growth Des. 8, 1406.

    Article  CAS  Google Scholar 

  16. Q. Li, Y. Ding, M. Shao, Wu Ji, G. Yu, and Y. Qi (2003). Mater. Res. Bull. 38, 539.

    Article  CAS  Google Scholar 

  17. M. J. Bierman, Y. K. A. Lau, and S. Jin (2007). Nano Lett. 7, 2907.

    Article  CAS  Google Scholar 

  18. J. Xu, J. Zhang, and J. Qian (2010). Mater. Lett. 64, 771.

    Article  CAS  Google Scholar 

  19. C. Cheng, G. Xu, and H. Zhang (2009). J. Cryst. Growth. 311, 1285.

    Article  CAS  Google Scholar 

  20. J. J. Zhu, O. Palchik, S. G. Chen, and A. Gedanken (2000). J. Phys. Chem. B. 104, 7344.

    Article  CAS  Google Scholar 

  21. A. Sobhani, F. Davar, and M. Salavati-Niasari (2011). Appl. Surf. Sci. 257, 7982.

    Article  CAS  Google Scholar 

  22. X. Wang, K. Li, Y. Dong, and K. Jiang (2010). Cryst. Res. Technol. 45, 94.

    Article  Google Scholar 

  23. W.-B. Zhao, J–. J. Zhu, and H.-Y. Chen (2004). Scripta Mater. 50, 1169.

    Article  CAS  Google Scholar 

  24. W.-K. Koh, A. C. Bartnik, F. W. Wise, and C. B. Murray (2010). J. Am. Chem. Soc. 132, 3909.

    Article  CAS  Google Scholar 

  25. F. Mohandes, F. Davar, and M. Salavati-Niasari (2010). J. Magn. Magn. Mater. 322, 872.

    Article  CAS  Google Scholar 

  26. M. Salavati-Niasari, N. Mir, and F. Davar (2009). J. Alloys Compd. 476, 908.

    Article  CAS  Google Scholar 

  27. M. R. Salavati-Niasari, Estarki Loghman, and F. Davar (2008). Chem Eng. J. 145, 346.

    Article  CAS  Google Scholar 

  28. F. Soofivand, F. Mohandes, and M. Salavati-Niasari (2012). Micro Nano Lett. 7, 283.

    Article  Google Scholar 

  29. F. Zhang, F.-L. Bei, J.-M. Cao, and X. Wang (2008). J. Solid State Chem. 181, 143.

    Article  CAS  Google Scholar 

  30. F. Mohandes, F. Davar, and M. Salavati-Niasari (2010). J. Phys. Chem. Solids 71, 1623.

    Article  CAS  Google Scholar 

  31. F. Mohandes, F. Davar, M. Salavati-Niasari, and K. Saberyan (2011). Current Nanosci. 7, 260.

    Article  CAS  Google Scholar 

  32. A. Kazemi-Babaheydari, M. Salavti-Niasari, and A. Khansari (2012). Particuology 10, 759.

    Article  Google Scholar 

  33. R. Jenkins and R. L. Snyder Chemical Analysis: Introduction to X-ray Powder Diffractometry (John Wiley and Sons Inc., New York, 1996).

    Book  Google Scholar 

  34. E. Esmaeili, M. Salavati-Niasari, F. Mohandes, F. Davar, and H. Seyghalkar (2011). Chem. Eng. J. 170, 278.

    Article  CAS  Google Scholar 

  35. G. Herrera, E. Chavira, J. Jiménez-Mier, A. Ordoñez, E. Fregoso-Israel, L. Baños, E. Bucio, J. Guzmán, O. Novelo, and C. Flores (2009). J. Alloys Compd. 479, 511.

    Article  CAS  Google Scholar 

  36. Y. Ni, B. Qiu, J. Hong, L. Zhang, and X. Wei (2008). Mater. Res. Bull. 43, 2668.

    Article  CAS  Google Scholar 

  37. X. Ji, B. Zhang, T. M. Tritt, J. W. Kolis, and A. Kumbhar (2007). J. Electron. Mater. 36, 721.

    Article  CAS  Google Scholar 

  38. B. Wan, C. Hu, Y. Xi, J. Xu, and X. Hec (2010). Solid State Sci. 12, 123.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to council of University of Kashan for supporting this work by Grant No (159271/56), Iran National Science Foundation and IST, Jawaharlal Nehru Technological University Hyderabad and TEM section, SAIF, NEHU, Shillong, Meghalaya, India, for providing financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salavati-Niasari, M., Shoshtari-Yeganeh, B. & Mohandes, F. Solvothermal Synthesis and Characterization of PbSe Nanostructures with the Aid of Schiff-base Ligand. J Clust Sci 24, 657–667 (2013). https://doi.org/10.1007/s10876-013-0564-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0564-5

Keywords

Navigation