Skip to main content
Log in

Electronic and Chemical Characterization of Aluminum–Nitrogen (AlN) Substituted Fullerenes: C58AlN to C24Al12N12

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Density functional theory calculations (B3LYP/6-311G*) are applied to devise a series of AlN-substituted C60 fullerenes, avoiding weak homonuclear Al–Al and N–N bonds. The substitutional structures, energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, ionization potentials, binding energies, as well as dipole moments have been systematically investigated. The band gap (HOMO–LUMO gap) is larger for all the AlN-substituted fullerenes than C60. The properties of heterofullerenes, especially, the HOMO–LUMO strongly depend on the number of AlN units. Natural charge analyses indicate that doping of fullerene with AlN units exerts electronic environment diversity to the cage. High charge transfer on the surfaces of our heterofullerenes provokes more studies on their possible application for hydrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Pradeep, V. Vijayakrishnan, A. K. Santra, and C. N. R. Rao (1991). J. Phys. Chem. 95, 10564.

    Article  CAS  Google Scholar 

  2. S. H. Xu, M. Y. Zhang, Y. Y. Zhao, B. B. G. Chen, J. Zhang, and C. C. Sun (2006). Chem. Phys. Lett. 418, 297.

    Article  CAS  Google Scholar 

  3. F. Liu, L. Meng, and S. Zheng (2006). J. Phys. Chem. B 110, 6666.

    Article  CAS  Google Scholar 

  4. T. Kar, J. Pattanayak, and S. Scheiner (2003). J. Phys. Chem. A 107, 8630.

    Article  CAS  Google Scholar 

  5. J. Pattanayak, T. Kar, and S. Scheiner (2002). J. Phys. Chem. A 106, 2970.

    Article  CAS  Google Scholar 

  6. C. N. Ramachandran and N. Sathyamurthy (2007). J. Phys. Chem. A 11, 6901.

    Article  Google Scholar 

  7. M. Menon and D. J. Srivastava (1998). Mater. Res. 3, 2357.

    Article  Google Scholar 

  8. H. Kietzmann, R. Rochow, G. Ganteför, W. Eberhardt, K. Vietze, G. Seifert, and P. W. Fowler (1998). Phys. Rev. Lett. 8, 5378.

    Article  Google Scholar 

  9. H. Prinzbach, A. Weller, P. Landenberger, F. Wahl, J. Wörth, L. T. Scott, M. Gelmont, D. Olevano, and B. V. Issendorff (2000). Nature 407, 60.

    Article  CAS  Google Scholar 

  10. T. Guo, C. Jin, and R. E. Smalley (1991). J. Phys. Chem. 95, 4948.

    Article  CAS  Google Scholar 

  11. Y. Chai, T. Guo, C. Jin, R. E. Haufler, L. P. F. Chibante, J. Fure, L. Wang, J. M. Alford, and R. E. Smalley (1991). J. Phys. Chem. 95, 7564.

    Article  CAS  Google Scholar 

  12. Z. Chen, K. Ma, Y. Pan, X. Zhao, and A. Tang (1999). Can. J. Chem. 77, 291.

    Article  CAS  Google Scholar 

  13. Z. Chen, X. Zhao, and A. Tang (1999). J. Phys. Chem. A 103, 10961.

    Article  CAS  Google Scholar 

  14. J. Lu, X. Zhang, and X. Zhao (2000). Mod. Phy. Lett. B 14, 23.

    Article  CAS  Google Scholar 

  15. J. Lu, S. Zhang, X. Zhang, and X. Zhao (2001). Solid State Commun. 118, 247.

    Article  CAS  Google Scholar 

  16. H. Jiao, Z. Chen, A. Hirsch, and W. Thiel (2002). Phys. Chem. Chem. Phys. 4, 4916.

    Article  CAS  Google Scholar 

  17. Y. Miyamoto, N. Hamada, A. Oshiyama, and S. Saito (1992). Phys. rev. B 46, 1749.

    Article  CAS  Google Scholar 

  18. N. Kurita, K. Kobayashi, H. Kumahora, K. Tago, and K. Ozawa (1992). Chem. Phys. Lett. 198, 95.

    Article  CAS  Google Scholar 

  19. N. Kurita, K. Kobayashi, H. Kumahora, and K. Tago (1993). Fullerene Sci. Technol. 1, 319.

    Article  CAS  Google Scholar 

  20. Z. Chen, K. Ma, Y. Pan, X. Zhao, A. Tang, and J. J. Feng (1998). Chem. Soc. Faraday Trans. 94, 2269.

    Article  CAS  Google Scholar 

  21. W. Andreoni, A. Curioni, K. Holczer, K. Prassides, M. Keshavarz-K, J.-C. Hummelen, and F. Wudl (1996). J. Am. Chem. Soc. 118, 11335.

    Article  CAS  Google Scholar 

  22. W. Andreoni, F. Gygi, and M. Parinello (1992). Chem. Phys. Lett. 190, 159.

    Article  CAS  Google Scholar 

  23. F. Chen, D. Singh, and S. A. Jansen (1993). J. Phys. Chem. 97, 10958.

    Article  CAS  Google Scholar 

  24. J. Pattanayak, T. Kar, and S. Scheiner (2001). J. Phys. Chem. A 105, 8376.

    Article  CAS  Google Scholar 

  25. T. Kar, M. Cuma, and S. Scheiner (1998). J. Phys. Chem. A 102, 10134.

    Article  CAS  Google Scholar 

  26. T. Kar, M. Cuma, and S. Scheiner (2000). J. Mol. Struct. THEOCHEM 556, 275.

    Article  CAS  Google Scholar 

  27. I. Gerasimov, X. Yang, and P. J. Dagdigian (1999). J. Chem. Phys. 110, 220.

    Article  CAS  Google Scholar 

  28. G. Meloni and K. A. Gingerich (1999). J. Chem. Phys. 111, 969.

    Article  CAS  Google Scholar 

  29. J. J. BelBruno (1999). Chem. Phys. Lett. 313, 795.

    Article  CAS  Google Scholar 

  30. J. Pattanayak, T. Kar, and S. Scheiner (2003). J. Phys. Chem. A 107, 4056.

    Article  CAS  Google Scholar 

  31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head- Gordon, E. S. Replogle, and J. A. Pople Gaussian 98 (Gaussian, Pittsburgh, 1998).

    Google Scholar 

  32. A. D. Becke (1988). Phys. Rev. A 38, 3098.

    Article  CAS  Google Scholar 

  33. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  34. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  35. P. C. Hariharan and J. A. Pople (1974). Mol. Phys. 27, 209.

    Article  CAS  Google Scholar 

  36. Y. Zhang, A. Wu, X. Xu, and Y. Yan (2007). J. Phys. Chem. A 111, 9431.

    Article  CAS  Google Scholar 

  37. E.D. Glendening, A.E. Reed, J.E. Carpenter and F. Weinhold, NBO Version 3.1.

  38. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899.

    Article  CAS  Google Scholar 

  39. A. Costales, M. A. Blanco, E. Francisco, A. Martán Pendás, and R. Pandey (2006). J. Phys. Chem. B 110, 4092–4098.

    Article  CAS  Google Scholar 

  40. A. Costales and R. Pandey (2003). J. Phys. Chem. A 107, 191–197.

    Article  CAS  Google Scholar 

  41. Z. Chen, K. Ma, H. Zhao, Y. Pan, X. Zhao, A. Tang, and J. Feng (1999). J. Mol. Struct. THEOCHEM 466, 127–135.

    Article  CAS  Google Scholar 

  42. A. K. Kandalam, M. A. Blanco, and R. Pandey (2001). J. Phys. Chem. B 105, 6080–6084.

    Article  CAS  Google Scholar 

  43. Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe (2009). Acs Nano 3, 621–626.

    Article  CAS  Google Scholar 

  44. D. Zhang and R. Q. Zhang (2005). J. Mater. Chem. 15, 3034–3038.

    Article  CAS  Google Scholar 

  45. [R.D. Johnson (2006) NIST Standard Reference Database Number 101. In NIST Computational Chemistry Comparison and Benchmark Database; III, NIST: Washington, DC.

  46. Ch Chang, A. B. C. patzer, E. sedimayer, T. Steinke, and D. Sülzle (2001). Chem. Phys. Lett. 350, 399–404.

    CAS  Google Scholar 

  47. G. E. Froudakis (2001). Nano Lett. 1, 531–533.

    Article  CAS  Google Scholar 

  48. M. Anafcheh and R. Ghafouri (2012). Struct. Chem. 23, 1921–1929.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Naderi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anafcheh, M., Ghafouri, R. & Naderi, F. Electronic and Chemical Characterization of Aluminum–Nitrogen (AlN) Substituted Fullerenes: C58AlN to C24Al12N12 . J Clust Sci 24, 327–339 (2013). https://doi.org/10.1007/s10876-013-0555-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0555-6

Keywords

Navigation