Skip to main content
Log in

ZnO Nanocluster as a Potential Catalyst for Dissociation of H2S Molecule

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Adsorption of hydrogen sulfide (H2S) on the external and internal surface of Zn12O12 nanocluster was studied by using density functional calculations. The results indicate that the H2S molecule is physically adsorbed or chemically dissociated by the nanocluster. It was found that the H2S molecule can dissociate into –H and–SH fragments, suggesting that the nanocluster might be a potential catalyst for dissociation of the H2S molecule. Also, dissociation of H2S to S species in internal surface of the Zn12O12 nanocluster is energetically impossible. The HOMO–LUMO energy gap of H2S dissociation configuration is changed about 27.68 %, indicating that the electronic properties of the nanocluster by dissociation process have strongly changed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G. R. Gu and T. Ito (2011). Appl. Surf. Sci. 257, 2455–2460.

    Article  CAS  Google Scholar 

  2. X. Qiu, J. Y. Howe, H. M. Meyer, E. Tuncer, and M. P. Parantharman (2011). Appl. Surf. Sci. 257, 4057–4081.

    Google Scholar 

  3. Y. L. Wu, A. I. Y. Tok, F. Y. C. Boey, X. T. Zeng, and X. H. Zhang (2007). Appl. Surf. Sci. 253, 5473–5479.

    Article  CAS  Google Scholar 

  4. J. D. Prades, A. Cirera, and J. R. Morante (2009). Sens. Actuators B 142, 179–184.

    Article  Google Scholar 

  5. J. Duan, X. Huang, and E. Wang (2006). Mater. Lett. 60, 1918–1921.

    Article  CAS  Google Scholar 

  6. U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, and (2005). J. Appl. Phys. 98, 041301.

    Article  Google Scholar 

  7. C. Klingshirn (2007). Chem. Phys. Chem. 8, 782–803.

    Article  CAS  Google Scholar 

  8. L. Schmidt-Mende and J. L. MacManus-Driscoll (2007). Mater. Today 10, 40–48.

    Article  CAS  Google Scholar 

  9. I. I. Novochinskii, C. S. Song, X. L. Ma, X. S. Liu, L. Shore, J. Lampert, and R. J. Farrauto (2004). Energy Fuels 18, 576–583.

    Article  CAS  Google Scholar 

  10. H. Y. Yang, R. Sothen, D. R. Cahela, and B. J. Tatarchuk (2008). Ind. Eng. Chem. Res. 47, 10064–10070.

    Article  CAS  Google Scholar 

  11. I. Rosso, C. Galletti, M. Bizzi, G. Saracco, and V. Specchia (2003). Ind. Eng. Chem. Res. 42, 1688–1697.

    Article  CAS  Google Scholar 

  12. J. Lin, J. A. May, S. V. Didziulis, and E. I. Solomon (1992). J. Am. Chem. Soc. 114, 4718–4727.

    Article  CAS  Google Scholar 

  13. H. L. Fan, Y. X. Li, C. H. Li, H. X. Guo, and K. C. Xie (2002). Fuel 81, 91–96.

    Article  CAS  Google Scholar 

  14. P. R. Westmoreland and D. P. Harrison (1976). Environ. Sci. Technol. 10, 659–661.

    Article  CAS  Google Scholar 

  15. L. Ling, J. Wuc, J. Song, P. Han, and B. Wang (2012). Comput. Theor. Chem. 1000, 26–32.

    Article  CAS  Google Scholar 

  16. J. A. Rodriguez and A. Maiti (2000). J. Phys. Chem. B 104, 3630–3638.

    Article  CAS  Google Scholar 

  17. X. D. Gao, X. M. Li, and W. D. Yu (2004). Appl. Surf. Sci. 229, 275–281.

    Article  CAS  Google Scholar 

  18. A. Al-Sunaidi and S. Goumri-Said (2011). Chem. Phys. Lett. 507, 111–116.

    Article  CAS  Google Scholar 

  19. A. D. Becke (1988). Phys. Rev. A 38, 3098–3100.

    Article  CAS  Google Scholar 

  20. J. Beheshtian, M. Kamfiroozi, Z. Bagheri, and A. Ahmadi (2012). Comput. Mater. Sci. 54, 115–118.

    Article  CAS  Google Scholar 

  21. M. Schmidt, et al. (1993). J. Comput. Chem. 14, 1347.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Baei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyghan, A.A., Baei, M.T. & Hashemian, S. ZnO Nanocluster as a Potential Catalyst for Dissociation of H2S Molecule. J Clust Sci 24, 341–347 (2013). https://doi.org/10.1007/s10876-013-0553-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0553-8

Keywords

Navigation