Skip to main content
Log in

Electronic and Structural Properties of Neutral, Anionic, and Cationic Rh x Cu4−x (x = 0–4) Small Clusters: A DFT Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, electronic structure, stability, and tendency to exchange electron of neutral, anionic, and cationic Rh x Cu4−x (x = 0–4) small clusters were investigated by density functional theory calculations. For neutral small clusters, it was found that the most stable structures of Rh4, Rh3Cu and Rh2Cu2 have distorted tetrahedral shape while the most stable structures of RhCu3 and Cu4 have quasi-planer shape. Adding charges to the clusters, caused shapes of the most stable structures undergo variations. Stabilities of the neutral, anionic, and cationic clusters decrease linearly with increasing the copper content. In addition, calculated chemical harnesses indicated that the small cluster with 75 % copper content has the least chemical hardness. Interestingly, prevailing number of electronegative (Rh) and electropositive (Cu) atoms in the anionic and cationic clusters coincides with high dipole moment in these species that occur at 25 and 75 % copper respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. J. Harding, T. R. Walsh, S. M. Hamilton, W. S. Hopkins, S. R. Mackenzie, P. Gruene, M. Haertelt, G. Meijer, and A. Fielicke (2010). J. Chem. Phys. 132, 011101.

    Article  CAS  Google Scholar 

  2. J. L. Rao, G. K. Chaitanya, S. Basavaraja, K. Bhanuprakash, and A. Venkataramana (2007). J. Mol. Struct. THEOCHEM 803, 89.

    Article  CAS  Google Scholar 

  3. M. Nahali and F. Gobal (2010). Mol. Phys. 108, 1317.

    Article  CAS  Google Scholar 

  4. M. Nahali and F. Gobal (2009). Mol. Phys. 107, 1805.

    Article  CAS  Google Scholar 

  5. J. Scaranto and S. Giorgianni (2009). Mol. Phys. 107, 1997.

    Article  CAS  Google Scholar 

  6. M. Karabacak, S. Ozcelik, and Z. B. Guvenc (2003). Surf. Sci. 532–535, 306.

    Article  Google Scholar 

  7. B. Kalita and R. C. Deka (2007). J. Chem. Phys. 127, 244306.

    Article  Google Scholar 

  8. G. Lv, F. Wei, H. Jiang, Y. Zhou, and X. Wang (2009). J. Mol. Struct. THEOCHEM 915, 98.

    Article  CAS  Google Scholar 

  9. F. Gobal, R. Arab, and M. Nahali (2010). J. Mol. Struct. THEOCHEM 959, 15.

    Article  CAS  Google Scholar 

  10. A. Pundt, M. Suleiman, C. Bahtz, M. T. Reetz, R. Kirchheim, and N. M. Jisrawi (2004), Mater. Sci. Eng. B 108, 19.

    Google Scholar 

  11. L. P. Campos (2007). J. Mol. Struct. THEOCHEM 815, 63.

    Article  Google Scholar 

  12. I. Efremenko and M. Sheintuch (2005). Chem. Phys. Lett. 401, 232.

    Article  CAS  Google Scholar 

  13. S. Gonzalez, C. Sousa, M. Fernandez-Garcıa, V. Bertin, and F. Illas (2002). J. Phys. Chem. B 106, 7839.

    Article  CAS  Google Scholar 

  14. B. V. Reddy, S. N. Khanna, and B. I. Dunlap (1993). Phys. Rev. Lett. 70, 3323.

    Article  CAS  Google Scholar 

  15. A. J. Cox, J. G. Louderback, and L. A. Bloomfield (1993). Phys. Rev. Lett. 71, 923.

    Article  CAS  Google Scholar 

  16. Y. C. Bae, H. Osanai, V. Kumar, and Y. Kawazoe (2004). Phys. Rev. B 70, 195413.

    Article  Google Scholar 

  17. T. Futschek, M. Marsman, and J. Hafner, (2005) J. Phys. Condens. Matter 17, 5927.

    Google Scholar 

  18. A. Endou, N. Ohashi, K. Yoshizawa, S. Takami, M. Kubo, A. Miyamoto, and E. Broclawik (2000). J. Phys. Chem. B 104, 5110.

    Article  CAS  Google Scholar 

  19. D. Harding, S. R. Mackenzie, and T. R. Walsh (2006). J. Phys. Chem. B 110, 18272.

    Article  CAS  Google Scholar 

  20. D. Loffreda, D. Simon, and P. Sautet (1998). J. Chem. Phys. 108, 6447.

    Article  CAS  Google Scholar 

  21. P. Ghosh, R. Pushpa, S. D. Gironcoli, and S. Narasimhan (2008). J. Chem. Phys. 128, 194708.

    Article  Google Scholar 

  22. K. Sugiyama, H. Miura, Y. Watanabe, and Y. Ukai (1987). Bull. Chem. Soc. Jpn. 60, 1579.

    Article  CAS  Google Scholar 

  23. Y. Yang, J. Evans, J. A. Rodriguez, J. A. Rodriguez, M. G. White, and P. Liu (2010). Phys. Chem. Chem. Phys. 12, 9909.

    Article  CAS  Google Scholar 

  24. T. Miyadera (1998). Appl. Catal. B 16, 155.

    Article  CAS  Google Scholar 

  25. G. De and C. N. R. Rao (2003). J. Phys. Chem. B 107, 13597.

    Article  CAS  Google Scholar 

  26. J. Torras, C. L. Dufaure, N. Russo, and J. M. Ricart (2001). J. Mol. Catal. A 167, 109.

    Article  CAS  Google Scholar 

  27. Y. Okamoto (2005). Chem. Phys. Lett. 405, 79.

    Article  CAS  Google Scholar 

  28. B. Gomes, J. A. N. F. Gomes, and F. Illas (2001). J. Mol. Catal. A 170, 187.

    Article  CAS  Google Scholar 

  29. S. P. de Visser, D. Kumar, M. Danovich, N. Nevo, D. Danovich, P. K. Sharma, W. Wu, and S. Shaik (2006). J. Phys. Chem. A 110, 8510.

    Article  Google Scholar 

  30. D. Danovich and S. Shaik (2010). J. Chem. Theory Comput. 6, 1479.

    Article  CAS  Google Scholar 

  31. M. Verdicchio, S. Evangelisti, T. Leininger, J. Sanchez-Marin, and A. Monari (2011). Chem. Phys. Lett. 503, 215.

    Article  CAS  Google Scholar 

  32. A. A. Granovsky (2009). Firefly version 7.1.G. http://classic.chem.msu.su/gran/firefly/index.html.

  33. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais (1992). Phys. Rev. B. 46, 6671.

    Article  CAS  Google Scholar 

  34. A. D. Becke (1993). J. Chem. Phys. 98, 1372.

    Article  CAS  Google Scholar 

  35. J. P. Perdew and Y. Wang (1992). Phys. Rev. B 45, 13244.

    Article  Google Scholar 

  36. P. B. Balbuena, P. A. Derosa, and J. M. Seminario (1999). J. Phys. Chem. B 103, 2830.

    Article  CAS  Google Scholar 

  37. C. Lacaze-Dufaure, C. Blanc, G. Mankowski, and C. Mijoule (2007). Surf. Sci. 601, 1544.

    Article  CAS  Google Scholar 

  38. P. B. Balbuena, S. R. Calvo, E. J. Lamas, P. F. Salazar, and J. M. Seminario (2006). J. Phys. Chem. B 110, 17452.

    Article  CAS  Google Scholar 

  39. E. D. German and M. Sheintuch (2008). J. Phys. Chem. C 112, 14377.

    Article  CAS  Google Scholar 

  40. R. L. T. Parreira, G. F. Caramori, S. E. Galembeck, and F. Huguenin (2008). J. Phys. Chem. A 112, 11731.

    Article  CAS  Google Scholar 

  41. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold Theoretical Chemistry Institute (University of Wisconsin, Madison, 2001).

    Google Scholar 

  42. D. R. Lide (ed.) CRC Handbook of Chemistry and Physics, 89th ed (CRC Press/Taylor and Francis, Boca Raton, 2009).

    Google Scholar 

  43. D. L. Cocke and K. A. Gingerich (1974). J. Chem. Phys. 60, 1958.

    Article  CAS  Google Scholar 

  44. J. Lv, F. Q. Zhang, X. H. Xu, and H. S. Wu (2009). Chem. Phys. 363, 65.

    Article  CAS  Google Scholar 

  45. K. P. Huber and G. Herzberg Constants of Diatomic Molecules, Molecular Spectra and Molecular Structure, vol. IV (Van Nostrand Reinhold Company, Princeton, 1979).

    Google Scholar 

  46. K. A. Gingerich and D. L. Cocke (1972). J. Chem. Soc. Chem. Commun. 1, 536.

    Article  Google Scholar 

  47. S. Dennler, J. Morillo, and G. M. Pastor (2003). Surf. Sci. 532–535, 334.

    Article  Google Scholar 

  48. E. A. Rohlfing and J. J. Valentini (1986). J. Chem. Phys. 84, 6560.

    Article  CAS  Google Scholar 

  49. V. Bertani, C. Cavallotti, M. Masi, and S. Carra (2003). J. Mol. Catal. A Chem. 204–205, 771.

    Article  Google Scholar 

  50. D. S. Mainardi and P. B. Balbuena (2003). J. Phys. Chem. A 107, 10370.

    Article  CAS  Google Scholar 

  51. V. E. Matulis and O. A. Ivaskevich (2006). Comput. Mater. Sci. 35, 268.

    Article  CAS  Google Scholar 

  52. A. E. Reed, R. B. Weinstock, and F. Weinhold (1985). J. Chem. Phys. 83, 735.

    Article  CAS  Google Scholar 

  53. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899.

    Article  CAS  Google Scholar 

  54. V. E. Matulis, O. A. Ivaskevich, and V. S. Gurin (2004). J. Mol. Struct. THEOCHEM 681, 169.

    Article  CAS  Google Scholar 

  55. R. G. Parr and R. G. Pearson (1983). J. Am. Chem. Soc. 105, 7512.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Office of the Vice Chancellor of Research of Sharif University of Technology, Babol Noshirvani University of Technology, and Semnan University for financial supports of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nahali.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 109 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arab, A., Gobal, F., Nahali, N. et al. Electronic and Structural Properties of Neutral, Anionic, and Cationic Rh x Cu4−x (x = 0–4) Small Clusters: A DFT Study. J Clust Sci 24, 273–287 (2013). https://doi.org/10.1007/s10876-013-0550-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0550-y

Keywords

Navigation