Advertisement

Journal of Cluster Science

, Volume 24, Issue 1, pp 209–215 | Cite as

Preparation and Characterization of NiO Nanoparticles Via Solid-State Thermal Decomposition of Nickel(II) Schiff Base Complexes [Ni(salophen)] and [Ni(Me-salophen)]

  • Aliakbar Dehno KhalajiEmail author
Original Paper

Abstract

This study focuses on the preparation and characterization of nickel oxide nanoparticles from nickel(II) Schiff base complexes as new precursors. At first nickel(II) complexes [Ni(salophen)] and [Ni(Me-salophen)] were synthesized and characterized by elemental analyses and FT-IR spectroscopy. Then NiO nanoparticles were prepared by solid-state thermal decomposition at 550 ºC for 3.5 h. The FT-IR spectrum confirmed the composition of products. The crystalline structures and morphology of products were studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD results revealed that the obtained products were nickel oxide. SEM and TEM images demonstrated that the NiO nanoparticles have uniform shape with size between 35 and 70 nm.

Keywords

Nanoparticles NiO Schiff base XRD SEM TEM 

Notes

Acknowledgments

Author is grateful to the Council of Iran National Science Foundation and Golestan University for financial support of this work.

References

  1. 1.
    M. Salavati-Niasari, F. Davar, and M. Mazaheri (2008). Mater. Lett. 62, 1890–1892.CrossRefGoogle Scholar
  2. 2.
    F. Mohandes, F. Davar, and M. Salavati-Niasari (2010). J. Mag. Mag. Mater. 322, 872–877.CrossRefGoogle Scholar
  3. 3.
    M. Salavati-Niasari, F. Davar, M. Mazaheri, and M. Shaterian (2008). J. Mag. Mag. Mater. 320, 575–578.CrossRefGoogle Scholar
  4. 4.
    M. Salavati-Niasari, A. Khansari, and F. Davar (2009). Inorg. Chim. Acta 362, 4937–4942.CrossRefGoogle Scholar
  5. 5.
    M. Salavati-Niasari, F. Davar, and M. Mazaheri (2008). Polyhedron 27, 3467–3471.CrossRefGoogle Scholar
  6. 6.
    F. Davar, M. Salavati-Niasari, N. Mir, K. Saberyan, M. Monemzadeh, and E. Ahmadi (2010). Polyhedron 29, 1747–1753.CrossRefGoogle Scholar
  7. 7.
    M. Salavati-Niasari, N. Mir, and F. Davar (2010). Inorg. Chim. Acta 363, 1719–1726.CrossRefGoogle Scholar
  8. 8.
    F. Davar, M. Salavati-Niasari, and Z. Fereshteh (2010). J. Alloys Com. 496, 638–643.CrossRefGoogle Scholar
  9. 9.
    M. Salavati-Niasari, N. Mir, and F. Davar (2010). Appl. Surf. Sci. 256, 4003–4008.CrossRefGoogle Scholar
  10. 10.
    M. Salavati-Niasari, F. Davar, and N. Mir (2008). Polyhedron 27, 3514–3518.CrossRefGoogle Scholar
  11. 11.
    M. Salavati-Niasari and F. Davar (2009). Mater. Lett. 63, 441–443.CrossRefGoogle Scholar
  12. 12.
    J. Bahadur, D. Sen, S. Mazumder, and S. Ramanathan (2008). J. Sol. State Chem. 181, 1227–1232.CrossRefGoogle Scholar
  13. 13.
    Granqvist (ed.) Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995).Google Scholar
  14. 14.
    I. Hotovy, J. huran, L. Spiess, S. Hascik, and V. Rehacek (1999). Sens. Actuators B 57, 147–153.CrossRefGoogle Scholar
  15. 15.
    D. Wang, R. Xu, X. Wang, and Y. Li (2006). Nanotechnology 17, 979–983.CrossRefGoogle Scholar
  16. 16.
    S. H. Lin, F. R. Chen, and J. J. Kai (2008). Appl. Surf. Sci. 254, 3357–3363.CrossRefGoogle Scholar
  17. 17.
    Y. R. Uhma, J. H. Park, W. W. Kima, C. H. Chob, and C. K. Rhee (2004). Mater. Sci. Eng. B106, 224–227.CrossRefGoogle Scholar
  18. 18.
    M. Ghoreishi Amiri, A. Morsali, and F. Bigdeli (2011). J. Inorg. Organomet. Polym. 21, 195–200.CrossRefGoogle Scholar
  19. 19.
    M. Hosseinifard, L. Hashemi, V. Amani, and A. Morsali (2011). J. Inorg. Organomet. Polym. 21, 527–533.CrossRefGoogle Scholar
  20. 20.
    H. Sadeghzadeh and A. Morsali (2010). J. Inorg. Organomet. Polym. 20, 733–738.CrossRefGoogle Scholar
  21. 21.
    M. Khanpour and A. Morsali (2011). J. Inorg. Organomet. Polym. 21, 360–364.CrossRefGoogle Scholar
  22. 22.
    Z. Rashidi Ranjbar and A. Morsali (2011). J. Inorg. Organomet. Polym. 21, 421–430.CrossRefGoogle Scholar
  23. 23.
    A. R. Abbasi and A. Morsali (2010). Ultrason. Sonochem. 17, 572–578.CrossRefGoogle Scholar
  24. 24.
    H. Haddadian, A. Aslani, and A. Morsali (2009). Inorg. Chim. Acta 362, 1805–1809.CrossRefGoogle Scholar
  25. 25.
    M. khanpour, A. Morsali, and P. Retailleau (2010). Polyhedron 29, 1520–1524.CrossRefGoogle Scholar
  26. 26.
    M. Salavati-Niasari, F. Davar, and Z. Fereshteh (2010). J. Alloys Com. 494, 410–414.CrossRefGoogle Scholar
  27. 27.
    M. Salavati-Niasari, F. Mohandes, F. Davar, M. Mazaheri, M. Monemzadeh, and N. Yavarinia (2009). Inorg. Chim. Acta 362, 3691–3697.CrossRefGoogle Scholar
  28. 28.
    F. Davar, Z. Fereshteh, and M. Salavati-Niasari (2009). J. Alloys Com. 476, 797–801.CrossRefGoogle Scholar
  29. 29.
    M. Salavati-Niasari, N. Mir, and F. Davar (2010). J. Alloys Com. 493, 163–168.CrossRefGoogle Scholar
  30. 30.
    H. Duan, X. Zheng, S. Yuan, Y. Li, Z. Tian, Z. Deng, and B. Su (2012). Mater. Lett. 81, 245–247.CrossRefGoogle Scholar
  31. 31.
    A. Allgui and R. Wuthrich (2011). Electrochim. Acta 58, 12–18.CrossRefGoogle Scholar
  32. 32.
    Y. Qi, H. Qi, J. Li, and C. Lu (2008). J. Crystal Growth 310, 4221–4225.CrossRefGoogle Scholar
  33. 33.
    N. Srivastava and P. C. Srivastava (2010). Physica E 42, 2225–2230.CrossRefGoogle Scholar
  34. 34.
    M. Alagiri, S. Ponnusamy, and C. Muthamizhchelvan (2012). J. Mater. Sci. 23, 728–732.Google Scholar
  35. 35.
    M. Ghosh, K. Biswas, A. Sundaresan, and C. N. R. Rao (2006). J. Mater. Chem. 16, 106–111.CrossRefGoogle Scholar
  36. 36.
    Q. Li, L.-S. Wang, B.-Y. Hu, C. Yang, L. Zhou, and L. Zhang (2007). Mater. Lett. 61, 1615–1618.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of ChemistryFaculty of Science, Golestan UniversityGorganIran

Personalised recommendations