Skip to main content
Log in

Low Temperature Preparation of 3D Solid and Hollow ZnS Nanosphere Self-Assembled from Nanoparticles by Varying Sulfur Source

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, we report a facile hydrothermal method for the preparation of three dimensional hollow ZnS nanostructures, using Zinc bis(salicyle aldehitato), Zn(Sal)2, thioacetamide (TAA) and thioglycolic acid (TGA) as Zn2+, sulfur source and capping agent, respectively. The ZnS solid and hollow sphere was produced from the self-assembly of nanoparticles with diameters of 11 ± 2 nm with TGA and TGA, TAA, respectively. Furthermore, with changing zinc precursor from Zn(Sal)2 to zinc acetate [Zn(OAC)2], ZnS nanorods were obtained. The products were characterized by XRD, SEM, TEM, selected area electron diffraction, and FT-IR spectra. The influence of surfactant (Polyethylene glycol) on the morphology of the products was also investigated. Possible formation mechanism and optical properties of these architectures were also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. W. DeGroot, C. Khadka, H. Rosner, and John F. Corrigan (2006). J. Cluster Sci. 17, 97–110.

    Article  CAS  Google Scholar 

  2. M. Luo, Y. Liu, J. Hu, J. Li, J. Liu, and R. M. Richards (2012). Appl. Catal. B Environ. 25, 180–188.

    Article  Google Scholar 

  3. M. Salavati-Niasari, F. Davar, and M. Mazaheri (2009). J. Alloys Compd. 470, 502–506.

    Article  CAS  Google Scholar 

  4. J. Liu, Z. Guo, W. Wang, Q. Huang, K. Zhu, and X. Chen (2011). Nanoscale 3, 1470–1473.

    Article  CAS  Google Scholar 

  5. L. Wang, L. Chen, T. Luo, and Y. Qian (2006). Mater. Lett. 60, 3627–3630.

    Article  CAS  Google Scholar 

  6. M. Ranjbar, M. Salavati-Niasari, S. M. Hosseinpour-Mashkani, and K. Venkateswara-Rao (2012). J. Inorg. Organomet. Polym. Mater. 22, 1122–1127.

    Article  CAS  Google Scholar 

  7. X. Wang, Q. Zhang, B. Zoua, A. Lei, and P. Rena (2011). Appl. Surf. Sci. 257, 10898–10902.

    Article  CAS  Google Scholar 

  8. M. Salavati-Niasari and M. R. Loghman-Estarki (2009). J. Alloys Compd. 475, 782–788.

    Article  CAS  Google Scholar 

  9. H. Zhang and L. Qi (2006). Nanotechnology 17, 3984–3988.

    Article  CAS  Google Scholar 

  10. L. Wang, L. Chen, T. Luo, and Y. Qian (2006). Mater. Lett. 60, 3627–3630.

    Article  CAS  Google Scholar 

  11. X. Zhou, H. Shi, X. Fu, H. Liu, X. Zhao, and Z. Hu (2008). J. Dispers. Sci. Technol. 29, 250–256.

    Article  CAS  Google Scholar 

  12. Z. Hu, L. Li, X. Zhou, X. Fu, and G. Gu (2006). J. Colloid Interface Sci. 294, 328–333.

    Article  CAS  Google Scholar 

  13. H. Zhang, Y. Ji, X. Ma, J. Xu, and D. Yang (2003). Nanotechnology 14, 974–977.

    Article  CAS  Google Scholar 

  14. C.-H. Yan and D. Xue (2006). J. Phys. Chem. B 110, 25850–25855.

    Article  CAS  Google Scholar 

  15. Y. Liu, G. Xi, S. Chen, X. Zhang, Y. Zhu, and Y. T. Qian (2007). Nanothechnology 18, 285605.

    Article  Google Scholar 

  16. S. H. Yu and M. Yoshimura (2002). Adv. Mater. 14, 296–300.

    Article  CAS  Google Scholar 

  17. M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2009). Inorg. Chim. Acta 362, 3677–3683.

    Article  CAS  Google Scholar 

  18. L. Hu, J. Yan, M. Liao, H. Xiang, X. Gong, L. Zhang, and X. Fang (2012). Adv. Mater. 24, 2305–2309.

    Article  CAS  Google Scholar 

  19. H. Zhang, B. Chen, B. Gilbert, and J. F. Banfield (2006). J. Mater. Chem. 16, 249–254.

    Article  CAS  Google Scholar 

  20. S. Baskoutas, P. Poulopoulos, V. Karoutsos, M. Angelakeris, and N. K. Flevaris (2006). Chem. Phys. Lett. 417, (461), 296.

    Google Scholar 

  21. S. Baskoutas, A. F. Terzis, and W. Schommers (2006). J. Comput. Theor. Nanosci. 3, 269.

    CAS  Google Scholar 

  22. M. Mohammadikish, F. Davar, M. R. Loghman-Estarki, and Z. Hamidi (2012). Ceram. Int. doi:10.1016/j.ceramint.2012.10.001.

  23. Z. Shen, G. Chen, Q. Wang, Y. Yu, C. Zhou, and Y. Wang (2012). Nanoscale 4, 2010–2017.

    Article  CAS  Google Scholar 

  24. Y. Wang, A. Suna, W. Mahler, and R. Kasowaki (1987). J. Chem. Phys. 87, 7315. doi:10.1063/1.453325.

    Article  CAS  Google Scholar 

  25. D. Mitra, I. Chakraborty, and S. P. Moulik (2005). Colloid J. 67, 494. doi:10.1007/s10595-005-0117-1.

    Article  Google Scholar 

  26. Y. Wang and N. Herron (1991). J. Phys. Chem. 95, 525. doi:10.1021/j100155a009.

    Article  CAS  Google Scholar 

  27. J. Y. Zeng Introduction to Quantum Mechanics (Peking University Press, Beijing, 1991).

    Google Scholar 

  28. E. L. Wolf Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience (Wiley-VCH, Weinheim, 2004), p. 63.

    Google Scholar 

  29. M. Salavati-Niasari, F. Davar, and M. R. Loghman-Estarki (2009). J. Alloys Compd. 481, 776–780.

    Article  CAS  Google Scholar 

  30. M. Salavati-Niasari, F. Davar, and M. R. Loghman-Estarki (2010). J. Alloys Compd. 494, 199–204.

    Article  CAS  Google Scholar 

  31. C. L. Cowles, X. Zhu, and N. G. Publicover (2011). Analyst 136, 2975–2980.

    Article  CAS  Google Scholar 

  32. N. S. Nirmala Jothi and P. Sagayaraj (2012). Arch. Appl. Sci. Res. 4, (2), 1079–1090.

    CAS  Google Scholar 

  33. Z. Jiang, H. Sun, Z. Qin, X. Jiao, and D. Chen (2012). Chem. Commun. 48, 3620–3622.

    Article  CAS  Google Scholar 

  34. F. Davar, M. Mohammadikish, M. R. Loghman-Estarki, and Z. Hamidi (2012). Cry. Eng. Commun. 14, 7338–7344.

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to the council of Islamic Azad University, Kermanshah for providing financial support to undertake this work. Two of the authors would like to present this work to your daughter dear Sara for her birthday. For further question about mechanism of ZnS hollow sphere, one can contact from the second corresponding authors of this articles (loghman57@gmail.com, mr.loghman@ma.iut.ac.ir). The authors would like to thank Dr. Abdi, Ms. Salehi, Mr. Tolui for having time to take SAED, TEM, SEM analysis. The authors would also like to appreciate Mr. Emam Alizadeh and Mr.Adjabshiri for 2nd TEM series.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Mohammadikish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadikish, M., Davar, F. & Loghman-Estarki, M.R. Low Temperature Preparation of 3D Solid and Hollow ZnS Nanosphere Self-Assembled from Nanoparticles by Varying Sulfur Source. J Clust Sci 24, 217–231 (2013). https://doi.org/10.1007/s10876-012-0538-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0538-z

Keywords

Navigation