Skip to main content
Log in

Microwave Promoted Oxidative Addition Reactions of Os3(CO)12: Efficient Syntheses of Triosmium Clusters of the Type Os3(μ-X)2(CO)10 and Os3(μ-H)(μ-OR)(CO)10

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Microwave heating allows for the high-yield, one-step synthesis of the known triosmium complexes Os3(μ-Br)2(CO)10 (1), Os3(μ-I)2(CO)10 (2), and Os3(μ-H)(μ-OR)(CO)10 with R = methyl (3), ethyl (4), isopropyl (5), n-butyl (6), and phenyl (7). In addition, the new clusters Os3(μ-H)(μ-OR)(CO)10 with R = n-propyl (8), sec-butyl (9), isobutyl (10), and tert-butyl (11) are synthesized in a microwave reactor. The preparation of these complexes is easily accomplished without the need to first prepare an activated derivative of Os3(CO)12, and without the need to exclude air from the reaction vessel. The syntheses of complexes 1 and 2 are carried out in less than 15 min by heating stoichiometric mixtures of Os3(CO)12 and the appropriate halogen in cyclohexane. Clusters 36 and 810 are prepared by the microwave irradiation of Os3(CO)12 in neat alcohols, while clusters 7 and 11 are prepared from mixtures of Os3(CO)12, alcohol and 1,2-dichlorobenzene. Structural characterization of clusters 2, 4, and 5 was carried out by X-ray crystallographic analysis. High resolution X-ray crystal structures of two other oxidative addition products, Os3(CO)12I2 (12) and Os3(μ-H)(μ-O2CC6H5)(CO)10 (13), are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. L. Powell, in N. E. Leadbeater (ed.), Microwave Heating as a Tool for Sustainable Chemistry (CRC Press, Boca Raton, 2010), pp. 175–205.

  2. O. V. Kharissova, B. I. Kharisov and U. O. Méndez, in S. Grundas (ed.), Advances in Induction and Microwave Heating of Mineral and Organic Materials (InTech, Rijeka 2011), pp. 345–390.

  3. N. E. Leadbeater and K. M. Shoemaker (2008). Organometallics 27, 1254.

    Article  CAS  Google Scholar 

  4. K. D. Johnson and G. L. Powell (2008). J. Organomet. Chem. 693, 1712.

    Article  CAS  Google Scholar 

  5. J. Y. Jung, B. S. Newton, M. L. Tonkin, C. B. Powell, and G. L. Powell (2009). J. Organomet. Chem. 694, 3526.

    Article  CAS  Google Scholar 

  6. J. Y. Jung, D. K. Kempe, L.-H. J. Loh, S. E. Shoultz, and G. L. Powell (2012). J. Organomet. Chem. 700, 219.

    Article  CAS  Google Scholar 

  7. R. D. Adams and J. P. Selegue in G. Wilkinson, F. G. A. Stone, and E. W. Abel (eds.), Comprehensive Organometallic Chemistry (Elsevier, Oxford, 1982), pp. 967–1064.

    Chapter  Google Scholar 

  8. K. Burgess (1984). Polyhedron 3, 1175.

    Article  CAS  Google Scholar 

  9. K. J. Pyper, J. Y. Jung, B. S. Newton, V. N. Nesterov, and G. L. Powell (2013). J. Organomet. Chem. 723, 103.

    Article  CAS  Google Scholar 

  10. B. F. G. Johnson, J. Lewis, and P. A. Kilty (1968). J. Chem. Soc. A 2859.

  11. A. J. Deeming, B. F. G. Johnson, and J. Lewis (1970). J. Chem. Soc. A, 897.

  12. G. G. Aleksandrov, G. P. Zol’nikova, I. I. Kritskaya, and Y. T. Struchkov (1980). Koord. Khim. 6, 626.

    CAS  Google Scholar 

  13. F. W. B. Einstein, T. Jones, and K. G. Tyers (1982). Acta Crystallogr. B38, 1272.

    CAS  Google Scholar 

  14. K. A. Azam, A. J. Deeming, R. E. Kimber, and P. R. Shukla (1976). J. Chem. Soc. Dalton Trans., 1853.

  15. D. Roberto, E. Lucenti, C. Roveda, and R. Ugo (1997). Organometallics 16, 5974.

    Article  CAS  Google Scholar 

  16. APEX2 Version 2.14 (Bruker AXS Inc, Madison, 2007).

  17. SAINT (Bruker AXS Inc, Madison, 2007).

  18. G. M. Sheldrick, SADABS (University of Göttingen, Göttingen 1996).

  19. G. M. Sheldrick (2008). Acta Crystallogr. A64, 112.

    Google Scholar 

  20. N. Cook, L. Smart and P. Woodward (1977). J. Chem. Soc. Dalton Trans., 1744.

  21. J. R. Moss, M. L. Niven, and E. E. Sutton (1988). Transition Met. Chem. 13, 429.

    Article  CAS  Google Scholar 

  22. Y. S. Chen, S. L. Wang, R. A. Jacobson, and R. J. Angelici (1986). Inorg. Chem. 25, 1118.

    Article  CAS  Google Scholar 

  23. W. K. Leong and M. W. Lum (1999). Acta Crystallogr. C55, 881.

    CAS  Google Scholar 

  24. M. W. Lum and W. K. Leong (2001). J. Chem. Soc. Dalton Trans., 2476.

  25. S.-M. Lee and W.-T. Wong (1996). J. Clust. Sci. 7, 37.

    Article  CAS  Google Scholar 

  26. K. H. Chan, W. K. Leong, G. Jaouen, L. Leclerq, S. Top, and A. Vessières (2006). J. Organomet. Chem. 691, 9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of The Welch Foundation (Grant R-0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory L. Powell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyper, K.J., Kempe, D.K., Jung, J.Y. et al. Microwave Promoted Oxidative Addition Reactions of Os3(CO)12: Efficient Syntheses of Triosmium Clusters of the Type Os3(μ-X)2(CO)10 and Os3(μ-H)(μ-OR)(CO)10 . J Clust Sci 24, 619–634 (2013). https://doi.org/10.1007/s10876-012-0532-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0532-5

Keywords

Navigation