Skip to main content
Log in

Theoretical Study of Phenol Adsorption on Pristine, Ga-Doped, and Pd-Decorated (6,0) Zigzag Single-Walled Boron Phosphide Nanotubes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Phenol adsorption on the external surface of H-capped pristine, Ga-doped, and Pd-decorated (6,0) zigzag boron phosphide nanotubes (BPNTs) was studied by using density functional theory (DFT) calculations. The results indicate that the hydroxyl group of phenol prefers to attach to the Ga and Pd sites and thus the Ga-doped and Pd-decorated (6,0) can be used for removing phenol. The calculated adsorption energy of phenol on the Ga-doped and Pd-decorated (6,0) BPNTs are −0.724 and −420 eV, respectively and about 0.28 and 0.27 electrons are transferred from phenol to the nanotubes. In addition, the value for the fractional number of electrons transferred is negative, indicating that phenol act as an electron donor. Frontier molecular orbital theory (FMO) and structural analyses show that the high polar surface bonds and large bond lengths of the Ga-doped and Pd-decorated (6,0) BPNT surfaces increase the adsorption of phenol on the nanotube models. This study can be useful in removing phenol and development of many catalytic processes for formation of a variety of useful compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. A. Besley and A. J. Blundy (2006). J. Phys. Chem. B 110, 1701.

    Article  CAS  Google Scholar 

  2. G. Busca, S. Berardinelli, C. Resini, and L. Arrighi (2008). J. Hazard. Mater. 160, 265.

    Article  CAS  Google Scholar 

  3. S. D. Chakarova and A. E. Carlsson (2004). Phys. Rev. E 69, 021907.

    Article  CAS  Google Scholar 

  4. A. Knop and L. A. Pilato Phenolic Resins—Chemistry Applications and Performance (Springer, New York, 1985), p. 104.

    Google Scholar 

  5. H. Ihm and J. M. White (2000). J. Phys. Chem. B 104, 6202.

    Article  CAS  Google Scholar 

  6. B. Bartlett, J. M. Valdisera, and J. N. Russell (1999). Surf. Sci. 442, 265.

    Article  CAS  Google Scholar 

  7. J. Wallace Kirk-Othmer Encyclopedia of Chemical Technology, vol 18, 3rd ed (Wiley, New York, 2005), p. 747.

    Google Scholar 

  8. A. K. Myers and J. B. Benziger (1989). Langmuir 5, 1270.

    Article  CAS  Google Scholar 

  9. L. Delle Site, A. Alavi, and C. F. Abrams (2008). Phys. Rev. B 67, 193406.

    Article  Google Scholar 

  10. J. X. Zhao, B. Gao, Q. H. Cai, X. G. Wang, and X. Z. Wang (2011). Theor. Chem. Acc. 129, 85.

    Article  CAS  Google Scholar 

  11. C. Marilena, M. Simone, and C. Ruggero (2007). Phys. Rev. B 76, 085332.

    Article  Google Scholar 

  12. J. Karen, G. Andris, V. Tuukka, and J. P. Martti (2010). Phys. Rev. B 81, 235428.

    Article  Google Scholar 

  13. A. Ahmadi Peyghan, M. T. Baei, M. Moghimi, and S. Hashemian (2012). Comput. Theor. Chem. doi:10.1016/j.comptc.2012.07.037.

  14. M. Rezaei-Sameti (2012). Phys. B 407, 3717–3721.

    Article  CAS  Google Scholar 

  15. K. Li, W. Wang, and D. Cao (2011). Sens. Actuat. B: Chem. 159, 171–177.

    Article  CAS  Google Scholar 

  16. P. K. Chattaraj, U. Sarkar, and D. R. Roy (2006). Chem. Rev. 106, 2065.

    Article  CAS  Google Scholar 

  17. K. K. Hazarika, N. C. Baruah, and R. C. Deka (2009). Struct. Chem. 20, 1079.

    Article  CAS  Google Scholar 

  18. R. G. Parr, L. Szentpaly, and S. Liu (1999). J. Am. Chem. Soc. 121, 1922.

    Article  CAS  Google Scholar 

  19. R. G. Parr and R. G. Pearson (1983). J. Am. Chem. Soc. 105, 7512.

    Article  CAS  Google Scholar 

  20. F. Tournus and J. C. Charlier (2005). Phys. Rev. B 71, 165421.

    Article  Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople Gaussian 03, revision B03 (Gaussian, Pittsburgh, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Baei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyghan, A.A., Baei, M.T., Moghimi, M. et al. Theoretical Study of Phenol Adsorption on Pristine, Ga-Doped, and Pd-Decorated (6,0) Zigzag Single-Walled Boron Phosphide Nanotubes. J Clust Sci 24, 49–60 (2013). https://doi.org/10.1007/s10876-012-0513-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0513-8

Keywords

Navigation