Skip to main content
Log in

Structure, Electronic Properties and Interaction of MRn +n (n = 1–3, M = Cu, Ag and Au) Clusters: Ab Initio Calculations

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The structures and stabilities of MRn +n (n = 1–3, M = Cu, Ag and Au) series at the CCSD(T) theoretical level are performed. The n = 2 systems are more stable than its neighbours. The role of the interaction is investigated using the natural bond orbital analysis, Laplacian, electron localization function and reduced density gradient analysis. The results show the intermediate character in the M–Rn interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. L. R. Brock and M. A. Duncan (1995). J. Chem. Phys. 103, 9200.

    Article  CAS  Google Scholar 

  2. P. Pyykkö (1995). J. Am. Chem. Soc. 117, 2067.

    Article  Google Scholar 

  3. R. Kometer and N. Schwentner (1997). J. Chem. Phys. 106, 51.

    Article  CAS  Google Scholar 

  4. J. P. Read and A. D. Buckingham (1997). J. Am. Chem. Soc. 119, 9010.

    Article  CAS  Google Scholar 

  5. D. Schröder, H. Schwarz, J. Hrusak, and P. Pyykkö (1998). Inorg. Chem. 37, 624.

    Article  Google Scholar 

  6. V. Shah, H. F. Bowen, and B. Space (2000). J. Chem. Phys. 112, 10998.

    Article  CAS  Google Scholar 

  7. S. Seidel and K. Seppelt (2000). Science 290, 117.

    Article  CAS  Google Scholar 

  8. C. J. Evans, A. Lesarri, and M. C. L. Gerry (2000). J. Am. Chem. Soc. 122, 6100.

    Article  CAS  Google Scholar 

  9. C. J. Evans and M. C. L. Gerry (2000). J. Chem. Phys. 112, 1321.

    Article  CAS  Google Scholar 

  10. C. J. Evans and M. C. L. Gerry (2000). J. Chem. Phys. 112, 9363.

    Article  CAS  Google Scholar 

  11. C. J. Evans, D. S. Rubinoff, and M. C. L. Gerry (2000). Phys. Chem. Chem. Phys. 2, 3943.

    Article  CAS  Google Scholar 

  12. J. M. Thomas, N. R. Walker, S. A. Cooke, and M. C. L. Gerry (2004). J. Am. Chem. Soc. 126, 1235.

    Article  CAS  Google Scholar 

  13. S. A. Cooke and M. C. L. Gerry (2004). J. Am. Chem. Soc. 126, 17000.

    Article  CAS  Google Scholar 

  14. S. A. Cooke and M. C. L. Gerry (2004). Phys. Chem. Chem. Phys. 6, 3248.

    Article  CAS  Google Scholar 

  15. J. M. Michaud, S. A. Cooke, and M. C. L. Gerry (2004). Inorg. Chem. 43, 3871.

    Article  CAS  Google Scholar 

  16. T. K. Ghanty (2005). J. Chem. Phys. 123, 074323.

    Article  Google Scholar 

  17. P. Lantto and J. Vaara (2006). J. Chem. Phys. 125, 174315.

    Article  Google Scholar 

  18. J. M. Michaud and M. C. L. Gerry (2006). J. Am. Chem. Soc. 128, 7613.

    Article  CAS  Google Scholar 

  19. T. K. Ghanty (2006). J. Chem. Phys. 124, 124304.

    Article  Google Scholar 

  20. A. Yousef, S. Shrestha, L. A. Viehland, et al. (2007). J. Chem. Phys. 127, 154309.

    Article  Google Scholar 

  21. R. J. Plowright, V. L. Ayles, M. J. Watkins, et al. (2006). J. Chem. Phys. 127, 204308.

    Article  Google Scholar 

  22. L. Belpassi, I. Infante, F. Tarantelli, and L. Visscher (2008). J. Am. Chem. Soc. 130, 1048.

    Article  CAS  Google Scholar 

  23. W. H. Breckenridge, V. L. Ayles, and T. G. Wright (2008). J. Phys. Chem. A 112, 4209.

    Article  CAS  Google Scholar 

  24. E. Wahlström Miljörisker (Schildts, Helsinki, 1994), p.105.

  25. G. Chalasiński and M. M. Szczęśniak (1994). Chem. Rev. 94, 1723.

    Article  Google Scholar 

  26. K. A. Peterson and C. Puzzarini (2005). Theor. Chem. Acc. 114, 283.

    Article  CAS  Google Scholar 

  27. K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg (2003). J. Chem. Phys. 119, 11113.

    Article  CAS  Google Scholar 

  28. M.J. Frisch, G.W. Trucks, et al. Gaussian 03 W, (Gaussian, Inc., Pittsburgh, 2003).

  29. S. F. Boys and F. Bernardi (1970). Mol. Phys. 19, 553.

    Article  CAS  Google Scholar 

  30. A. E. Reed and F. Weinhold (1983). J. Chem. Phys. 78, 4066.

    Article  CAS  Google Scholar 

  31. J. P. Foster and F. Weinhold (1980). J. Am. Chem. Soc. 102, 7211.

    Article  CAS  Google Scholar 

  32. P. Pyykkö (1988). Chem. Rev. 88, 563.

    Article  Google Scholar 

  33. J. Roithová and D. Schröder (2009). Coordin. Chem. Rev. 253, 666.

    Article  Google Scholar 

  34. R. F. W. Bader Atoms in Molecules, A Quantum Theory (Clarendon Press, Oxford, 1990).

    Google Scholar 

  35. D. Cremer and E. Kraka (1984). Angew. Chem. Int. Ed. 23, 627.

    Article  Google Scholar 

  36. W. Nakanishi, S. Hayashi, and K. Narahara (2008). J. Phys. Chem. A 112, 13593.

    Article  CAS  Google Scholar 

  37. A. D. Becke and K. E. Edgecombe (1990). J. Chem. Phys. 92, 5397.

    Article  CAS  Google Scholar 

  38. E. R. Johnson, S. Keinan, P. Mori-Sánchez, et al. (2010). J. Am. Chem. Soc. 132, 6498.

    Article  CAS  Google Scholar 

  39. T. Lu, “Multiwfn: Multifunctional wavefunction analyzer”, Version 2.3, http://Multiwfn.codeplex.com. Accessed 09 April 2012.

  40. W. Humphrey, A. Dalke, and K. Schulten (1996). J. Mol. Graphs. 14, 33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supports from the Projects for Youth Key Teacher by Henan Province (No. 2011GGJS-029) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xinying.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xinying, L., Xue, C. & Yusheng, W. Structure, Electronic Properties and Interaction of MRn +n (n = 1–3, M = Cu, Ag and Au) Clusters: Ab Initio Calculations. J Clust Sci 23, 995–1002 (2012). https://doi.org/10.1007/s10876-012-0485-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0485-8

Keywords

Navigation