Journal of Cluster Science

, Volume 23, Issue 3, pp 737–751 | Cite as

Complete Quenching of the Pd3(dppm)3(CO)2+ Cluster Emission Via Electrostatic Host–Guest Assemblies with Carboxylate-Containing Tetraphenylporphyrins of Ni(II) and Fe(III)

  • Bin Du
  • Adam Langlois
  • Daniel Fortin
  • Christine Stern
  • Pierre D. Harvey
Original Paper


The title cluster is luminescent at 77 K and exhibits an unsaturated site for binding anions when the counter ion is PF6 . A series of five non-luminescent metalloporphyrins exhibiting carboxylate anchoring groups were synthesized and characterized. These are the sodium salts of the 5-carboxyphenyl-tri-10,15,20-tolyl-, trans-di-5,10-carboxyphenyl-di-15,20-tolyl-, and tetra-5,10,15,20-carboxyphenyl(metallo)porphyrin (metallo = chloroiron(III), nickel(II)) anions. Evidence for supramolecular assemblies between the carboxylates and the cluster is provided by 31P NMR and UV–vis spectroscopy. The binding constant, K1n, extracted from the UV–vis data via Benesi-Hildebrand, Scott and Scatchard plots are approximately 21,000 ± 5,000 M−1 for the nickel(II) species, in agreement with the previously reported zinc(II) ones (K11 = 20,000 ± 2,000 M−1), but those for the chloroiron(III) are measured to be lower (12,500 ± 3,500 M−1). This association is accompanied by a complete quenching of the luminescence of the cluster which can only be due to an efficient energy transfer to the d–d states of the chloroiron(III) and nickel(II) species but an electron transfer from the nickel(II)-containing chromophore to the cluster is also possible. This work demonstrates the profound effect that supramolecular interactions may have on the photophysical properties despite the long donor–acceptor separation.


Palladium Metalloporphyrins Supramolecular Host–guest Luminescence 



This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), le Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), the Centre d’Etudes des Matériaux Optiques et Photoniques de l’Université de Sherbrooke (CEMOPUS), and the Agence National de la Recherche (ANR) for a grant of a Research Chair of Excellence. PDH thanks Prof. C. Reber for the Université de Montréal for the measurement of the solid state emission spectra of the title cluster.


  1. 1.
    B. R. Green and W. W. Parson (eds.), Light-Harvesting Antennas in Photosynthesis (Advances in Photosynthesis and Respiration) (Kluwer, Dordrecht, 2003).Google Scholar
  2. 2.
    M. R. Wasielewski (1992). Chem. Rev. 92, 435.CrossRefGoogle Scholar
  3. 3.
    E. Baranoff, J.-P. Collin, L. Flamigni, and J.-P. Sauvage (2004). Chem. Soc. Rev. 33, 147.CrossRefGoogle Scholar
  4. 4.
    J. S. Connolly and J. R. Bolton, in M. A. Fox and M. Chanon (eds.), Photoinduced Electron Transfer (Elsevier, Amsterdam, 1988), p. 303.Google Scholar
  5. 5.
    S. Fukuzumi and D. M. Guldi, in V. Balzani (ed.), Electron Transfer in Chemistry, vol. 2 (Wiley-VCH, Weinheim, 2001), p. 270.CrossRefGoogle Scholar
  6. 6.
    L. Sanchez, N. Martin, and D. M. Guldi (2005). Angew. Chem. Int. Ed. 44, 5374.CrossRefGoogle Scholar
  7. 7.
    F. D’Souza, S. Gadde, Amy. L. Schumacher, M. E. Zandler, A. S. D. Sandanayaka, Y. Araki, and O. Ito (2007). J. Phys. Chem. C 111, 11123.CrossRefGoogle Scholar
  8. 8.
    H. Imahori and Y. Sakata (1997). Adv. Mater. 9, 537.CrossRefGoogle Scholar
  9. 9.
    D. M. Guldi (2000). Chem. Commun. 321.Google Scholar
  10. 10.
    P. J. F. de Rege, S. A. Williams, and M. J. Therien (1995). Science 269, 1409.CrossRefGoogle Scholar
  11. 11.
    J. L. Sessler, B. Wang, S. L. Springs, and C. T. Brown, in Y. Murakami (ed.), Comprehensive Supramolecular Chemistry, vol. 4 (Pergamon Press, Oxford, 1996), p. 311.Google Scholar
  12. 12.
    J. L. Sessler, E. Karnas, S. K. Kim, Z. P. Ou, M. Zhang, K. M. Kadish, K. Ohkubo, and S. Fukuzumi (2008). J. Am. Chem. Soc. 130, 15256.CrossRefGoogle Scholar
  13. 13.
    B. Grimm, E. Karnas, M. Brettreich, K. Ohta, A. Hirsch, D. M. Guldi, T. Torres, and J. L. Sessler (2010). J. Phys. Chem. B 114, 14134.CrossRefGoogle Scholar
  14. 14.
    A. Prodi, C. J. Kleverlaan, M. T. Indelli, and F. Scandola (2001). Inorg. Chem. 40, 3498.CrossRefGoogle Scholar
  15. 15.
    P. J. Stang, J. Fan, and B. Olenyuk (1997). Chem. Commun. 1453.Google Scholar
  16. 16.
    V. Král, S. L. Springs, and J. L. Sessler (1995). J. Am. Chem. Soc. 117, 8881.CrossRefGoogle Scholar
  17. 17.
    B. Du, C. Stern, and P. D. Harvey (2011). Chem. Commun. 47, 6072.CrossRefGoogle Scholar
  18. 18.
    S. M. Aly, C. Ayed, C. Stern, R. Guilard, A. S. Abd-El-Aziz, and P. D. Harvey (2008). Inorg. Chem. 47, 9930.CrossRefGoogle Scholar
  19. 19.
    R. Provencher, K. T. Aye, M. Drouin, J. Gagnon, N. Boudreault, and P. D. Harvey (1994). Inorg. Chem. 33, 3689.CrossRefGoogle Scholar
  20. 20.
    C. Salomon, D. Fortin, C. Darcel, S. Jugé, and P. D. Harvey (2009). J. Cluster Sci. 20, 267.CrossRefGoogle Scholar
  21. 21.
    C. Cugnet, D. Lucas, Y. Mugnier, S. Dal Molin, A. Soldera, and P. D. Harvey (2007). Chem. Eur. J. 13, 5338.CrossRefGoogle Scholar
  22. 22.
    C. Cugnet, D. Lucas, F. Lemaître, E. Collange, A. Soldera, Y. Mugnier, and P. D. Harvey (2006). Chem. Eur. J. 12, 8386.CrossRefGoogle Scholar
  23. 23.
    X. Zhang, E. C. Wasinger, A. Z. Muresan, K. Attenkofer, G. Jennings, J. S. Lindsey, and L. X. Chen (2007). J. Phys. Chem. A 111, 11736.CrossRefGoogle Scholar
  24. 24.
    A. Rosa, G. Ricciardi, E. J. Baerends, M. Zimin, M. A. J. Rodgers, S. Matsumoto, and N. Ono (2005). Inorg. Chem. 44, 6609.CrossRefGoogle Scholar
  25. 25.
    Y. Mizutani and T. Kitagawa (2002). Bull. Chem. Soc. Jpn. 75, 623.CrossRefGoogle Scholar
  26. 26.
    A. C. Banciu (2003). Rev. Roum. Chim. 47, 805.Google Scholar
  27. 27.
    J. Rochford, D. Chu, A. Hagfeldt, and E. Galoppini (2007). J. Am. Chem. Soc. 129, 4655.CrossRefGoogle Scholar
  28. 28.
    K. A. Connors, Binding Constants: The Measurements of Molecular Complex Stability (Wiley, New York, 1987).Google Scholar
  29. 29.
    H. D. Flack, E. Blanc, and D. Schwarzenbach (1992). J. Appl. Crystallogr. 25, 455.CrossRefGoogle Scholar
  30. 30.
    E. J. Gabe, Y. Le Page, J.-P. Charland, F. L. Lee, and P. S. White (1989). J. Appl. Crystallogr. 22, 384.CrossRefGoogle Scholar
  31. 31.
    G. M. Sheldrick (1997). SHELXS-97, G.M. Sheldrick, University of Göttingen, Germany, Release 97-2.Google Scholar
  32. 32.
    Y. Mugnier, S. Dal Molin, C. Cugnet, D. Brevet, D. Lucas, and P. D. Harvey (2007). Inorg. Chem. 46, 3038.CrossRefGoogle Scholar
  33. 33.
    P. D. Harvey, K. Hierso, P. Braunstein, and X. Morise (1996). Inorg. Chim. Acta 250, 337.CrossRefGoogle Scholar
  34. 34.
    R. Provencher and P. D. Harvey (1993). Inorg. Chem. 32, 61.CrossRefGoogle Scholar
  35. 35.
    P. D. Harvey, S. Hubig, and T. Ziegler (1994). Inorg. Chem. 33, 3700.CrossRefGoogle Scholar
  36. 36.
    P. D. Harvey and Z. Murtaza (1993). Inorg. Chem. 32, 4721.CrossRefGoogle Scholar
  37. 37.
    E. Krokos, F. Spaenig, M. Ruppert, A. Hirsch, and D. M. Guldi (2012). Chem. Eur. J. 18, 1328.CrossRefGoogle Scholar
  38. 38.
    F. Spaenig, M. Ruppert, J. Dannhaeusser, A. Hirsch, and D. M. Guldi (2009). J. Am. Chem. Soc. 131, 9378.CrossRefGoogle Scholar
  39. 39.
    X. Sun, G. Chen, and J. Zhang (2008). J. Dyes Pigments 76, 499.CrossRefGoogle Scholar
  40. 40.
    D. Chatterjee and E. J. Balasubbramanian (1999). J. Coord. Chem. 46, 467.CrossRefGoogle Scholar
  41. 41.
    S. Dal Molin, Y. Mugnier, D. Fortin, and P. D. Harvey (2010). Dalton 39, 8976.CrossRefGoogle Scholar
  42. 42.
    D. Brevet, D. Lucas, Y. Mugnier, and P. D. Harvey (2006). J. Cluster Sci. 17, 5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Bin Du
    • 1
    • 2
  • Adam Langlois
    • 1
  • Daniel Fortin
    • 1
  • Christine Stern
    • 2
  • Pierre D. Harvey
    • 1
    • 2
  1. 1.Département de ChimieUniversité de SherbrookeSherbrookeCanada
  2. 2.Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB, UMR CNRS 6302)Université de BourgogneDijonFrance

Personalised recommendations