Skip to main content
Log in

A Computational NICS and 13C NMR Characterization of C60−n Si n Heterofullerenes (n = 1, 2, 6, 12, 20, 24, 30)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations are performed for a representative set of low-energy structures of C60-n Si n heterofullerenes (n = 1, 2, 6, 12, 20, 24, 30) to investigate the effect of silicon doping on the electron structure of fullerene. The results show that chemical shielding (CS) parameters are so sensitive to the structural distortion made by outwardly relaxing silicon doped atoms from the fullerene surface which results in puckered Si-doped rings. As a result, the chemical shifts of the nearest carbon sites of silicon atoms considerably shift to downfield. Our survey shows that those first neighbors of silicon atoms which have minor 13C chemical shift belong to normal (un-puckered) rings. Meanwhile, the chemical shielding anisotropy (Δσ) parameter detects the effects of dopant so that Δσ values of the carbon atoms which are contributed to the Si–C bond are mainly larger than the others. Compensation between diatropic and paratropic ring currents lead to less negative NICS values at cage centers of Si-doped fullerenes than that of C60 except C58Si2-b and C54Si6-b in which more negative NICS values may be attributed to more spherical geometries of their carbon cages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Health, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162.

    Article  CAS  Google Scholar 

  2. A. Hirsch Fullerenes and Related Structures (Springer, Berlin, 1999).

    Book  Google Scholar 

  3. R. Taylor The Chemistry of Fullerenes (World Scientific Publishing Company, River Edge, 1995).

    Book  Google Scholar 

  4. F. Diederich and C. Thilgen (1996). Science 271, 317.

    Article  CAS  Google Scholar 

  5. Y. L. Voytekhovsky and D. G. Stepenshchikov (2001). Acta. Crystallogr. 57, 736.

    Article  CAS  Google Scholar 

  6. D. J. Hornbaker, et al. (2002). Science 295, 828.

    Article  CAS  Google Scholar 

  7. R. E. Dinnebier, O. Gunnarsson, H. Brumm, E. Koch, P. W. Stephens, A. Huq, and M. Jansen (2002). Science 296, 109.

    Article  CAS  Google Scholar 

  8. W. Mickelson, S. Aloni, W. Q. Han, J. Cumings, and A. Zettl (2003). Science 300, 467.

    Article  CAS  Google Scholar 

  9. H. Kietzmann, R. Rochow, G. Ganteför, W. Eberhardt, K. Vietze, G. Seifert, and P. W. Fowler (1998). Phys. Rev. Lett. 81, 5378.

    Article  CAS  Google Scholar 

  10. H. Prinzbach, A. Weller, P. Landenberger, F. Wahl, J. Wörth, L. T. Scott, M. Gelmont, D. Olevano, and B. V. Issendorff (2000). Nature 407, 60.

    Article  CAS  Google Scholar 

  11. T. Guo, C. Jin, and R. E. Smalley (1991). J. Phys. Chem. 95, 4948.

    Article  CAS  Google Scholar 

  12. L. Hultman, S. Stafstrom, Z. Czigany, J. Neidhardt, J. Hellegren, I. F. Brunell, K. Suenaga, and C. Colliex (2001). Phys. Rev. Lett. 87, 225503.

    Article  CAS  Google Scholar 

  13. F. L. Liu (2007). Phys. Chem. Chem. Phys. 9, 3872.

    Article  CAS  Google Scholar 

  14. I. M. L. Billas, F. Tast, W. Branz, N. Malinowski, M. Heinebrodt, T. P. Martin, M. Boeroa, C. Massobrio, and M. Parrinello (1999). Eur. Phys. J. 9, 337.

    CAS  Google Scholar 

  15. M. Matsubara and C. Massobrio (2007). Appl. Phys. A 86, 289.

    Article  CAS  Google Scholar 

  16. C. C. Fu, M. Weissmann, M. Machado, and P. Ordejon (2001). Phys. Rev. B 63, 085411.

    Article  Google Scholar 

  17. T. Kimura, T. Sugai, and H. Shinohara (1996). Chem. Phys. Lett. 256, 269.

    Article  CAS  Google Scholar 

  18. J. L. Fye and M. F. Jarrold (1997). J. Phys. Chem. A 101, 1836.

    Article  CAS  Google Scholar 

  19. C. Ray, M. Pellarin, J. L. Lermé, J. L. Vialle, M. Broyer, X. Blase, P. Mélinon, P. Kéghélian, and A. Perez (1998). Phys. Rev. Lett. 80, 5365.

    Article  CAS  Google Scholar 

  20. M. Pellarin, C. Ray, J. Lermé, J. L. Vialle, M. Broyer, X. Blase, P. Kéghélian, P. Mélinon, and A. Perez (1999). J. Chem. Phys. 110, 6927.

    Article  CAS  Google Scholar 

  21. M. Pellarin, C. Ray, J. Lermé, J. L. Vialle, M. Broyer, X. Blase, P. Kéghélian, P. Mélinon, and A. Perez (1999). Eur. Phys. J. 9, 49.

    CAS  Google Scholar 

  22. P. A. Marcos, J. A. Alonso, and M. J. López (2007). J. Chem. Phys. 126, 044705.

    Article  Google Scholar 

  23. R. Wang, D. Zhang, and C. Liu (2005). Chem. Phys. Lett. 411, 333.

    Article  CAS  Google Scholar 

  24. M. N. Huda a and A. K. Ray (2008). Chem. Phys. Lett. 457, 124.

    Article  Google Scholar 

  25. I. M. L. Billas, et al. (1999). J. Chem. Phys. 111, 6787.

    Article  CAS  Google Scholar 

  26. I. M. L. Billas, et al. (1999). Nanostruct. Mater. 12, 1071.

    Article  Google Scholar 

  27. R. Scipioni, M. Matsubara, E. Ruiz, C. Massobrio, and M. Boero (2011). Chem. Phys. Lett. 510, 14.

    Article  CAS  Google Scholar 

  28. M. Matsubara and C. Massobrio (2005). J. Chem. Phys. 122, 084304.

    Article  CAS  Google Scholar 

  29. M. Matsubara, C. Massobrio, and J. C. Parlebas (2005). Comput. Mater. Sci. 33, 237.

    Article  CAS  Google Scholar 

  30. M. Matsubara and C. Massobrio (2005). J. Phys. Chem. A 109, 4415.

    Article  CAS  Google Scholar 

  31. L. Koponen, M. J. Puska, and R. M. Nieminen (2008). J. Chem. Phys. 28, 154307.

    Article  Google Scholar 

  32. C. Corminboeuf, P. W. Fowler, and T. Heine (2002). Chem. Phys. Lett. 361, 405.

    Article  CAS  Google Scholar 

  33. A. H. Romero, D. Sebastiani, R. Ramírez, and M. Kiwi (2002). Chem. Phys. Lett. 366, 134.

    Article  CAS  Google Scholar 

  34. M. Anafcheh and N. L. Hadipour (2011). Physica E. 44, 400.

    Article  CAS  Google Scholar 

  35. H. Jiao, Z. Chen, A. Hirsch, and W. Thiel (2003). J. Mol. Model. 9, 34.

    CAS  Google Scholar 

  36. Pv R Schleyer, C. Maerker, A. Drasnfield, H. Jiao, and N. J. R. V. E. Hommes (1996). J. Am. Chem. Soc. 118, 6317.

    Article  CAS  Google Scholar 

  37. P. V. R. Schleyer, H. Jiao, N. J. R. V. E. Hommes, V. G. Malkin, and O. Malkin (1997). J. Am. Chem. Soc. 119, 12669.

    Article  CAS  Google Scholar 

  38. P.v. R Schleyer, M. Manoharan, Z. X. Wang, B. Kiran, H. Jiao, R. Puchta, and N. J. R. V. E. Hommes (2001). Org Lett. 3, 2465.

    Article  CAS  Google Scholar 

  39. M. Buhl and A. Hirsch (2001). Chem. Rev. 101, 1153.

    Article  CAS  Google Scholar 

  40. M. Saunders, H. A. Jimenez-Vazquez, R. J. Cross, S. Mroczkowski, D. L. Freedberg, and F. A. L. Anet (1994). Nature 367, 256.

    Article  CAS  Google Scholar 

  41. M. Saunders, R. J. Cross, H. A. Jimenez-Vazquez, R. Shimshi, and A. Khong (1996). Science 271, 1693.

    Article  CAS  Google Scholar 

  42. M. Saunders, H. A. Jimenez-Vazquez, R. J. Cross, W. E. Billups, C. Gesenberg, A. Gonzalez, W. Luo, R. C. Haddon, F. Diederich, and A. Herrmann (1995). J. Am. Chem. Soc. 117, 9305.

    Article  CAS  Google Scholar 

  43. E. Shabtai, A. Weitz, R. C. Haddon, R. E. Hoffman, M. Rabinovitz, A. Khong, R. J. Cross, M. Saunders, P. C. Cheng, and L. T. Scott (1998). J. Am. Chem. Soc. 120, 6389.

    Article  CAS  Google Scholar 

  44. G. W. Wang, M. Saunders, A. Khong, and R. J. Cross (2000). J. Am. Chem. Soc. 122, 3216.

    Article  CAS  Google Scholar 

  45. Z. Chen, J. Cioslowski, N. Rao, D. Moncrieff, M. Buhl, A. Hirsch, and W. Thiel (2001). Theor. Chem. Acc. 106, 364.

    Article  CAS  Google Scholar 

  46. G. Sun and M. Kertesz (2001). J. Phys. Chem. A 105, 5468.

    Article  CAS  Google Scholar 

  47. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheese- man, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C.Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T.Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M.Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98, (Gaussian, Inc., Pittsburgh, 1998).

  48. A. D. Becke (1988). Phys. Rev. A 38, 3098.

    Article  CAS  Google Scholar 

  49. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  50. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  51. P. C. Hariharan and J. A. Pople (1974). Mol. Phys. 27, 209.

    Article  CAS  Google Scholar 

  52. Y. Zhang, A. Wu, X. Xu, and Y. Yan (2007). J. Phys. Chem. A. 111, 9431.

    Article  CAS  Google Scholar 

  53. R. Ditchfield, W. J. Hehre, and J. A. Pople (1972). J. Chem. Phys. 54, 724.

    Article  Google Scholar 

  54. R. S. Drago Physical Methods for Chemists, 2nd ed (Saunders College Publishing, Florida, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Anafcheh.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghafouri, R., Anafcheh, M. A Computational NICS and 13C NMR Characterization of C60−n Si n Heterofullerenes (n = 1, 2, 6, 12, 20, 24, 30). J Clust Sci 23, 469–480 (2012). https://doi.org/10.1007/s10876-012-0456-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0456-0

Keywords

Navigation