Skip to main content
Log in

Synthesis, Stability, and Photoluminescence Properties of PdAu10(PPh3)8Cl2 Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We report on the synthesis, stability, and photoluminescence (PL) properties of triphenylphosphine (PPh3)-stabilized PdAu10(PPh3)8Cl2 cluster, which is a mono-Pd-doped cluster of the well-studied Au11(PPh3)8Cl2 cluster. The PdAu10(PPh3)8Cl2 cluster was synthesized by simultaneously reducing two different metal complexes; AuCl(PPh3) and Pd(PPh3)4. Experimental evaluation of the stability showed that PdAu10(PPh3)8Cl2 is more stable against degradation in solution than the monometal Au11(PPh3)8Cl2 cluster. PL measurements revealed that PdAu10(PPh3)8Cl2 exhibits PL at 950 nm with a quantum yield of 1.5 × 10−3, which has not been observed for the monometal Au11(PPh3)8Cl2 cluster. The results indicate that Pd doping is a powerful method to produce clusters with higher stability and different physical properties than the monometal Au:PPh3 clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. McPartlin, R. Mason, and L. Malatesta (1969). Chem. Commun. 334.

  2. F. A. Vollenbroek, J. J. Bour, and J. W. A. van der Velden (1980). Rec. Trav. Chim. Pays-Bas 99, 137.

    Article  CAS  Google Scholar 

  3. M. Schulz-Dobrick and M. Jansen (2007). Z. Anorg. Allg. Chem. 633, 2326.

    Article  CAS  Google Scholar 

  4. G. H. Woehrle, M. G. Warner, and J. E. Hutchison (2002). J. Phys. Chem. B 106, 9979.

    Article  CAS  Google Scholar 

  5. Y. Yang and S. Chen (2003). Nano Lett. 3, 75.

    Article  CAS  Google Scholar 

  6. Y. Shichibu, Y. Negishi, T. Tsukuda, and T. Teranishi (2005). J. Am. Chem. Soc. 127, 13464.

    Article  CAS  Google Scholar 

  7. Y. Liu, H. Tsunoyama, T. Akita, and T. Tsukuda (2009). J. Phys. Chem. C 113, 13457.

    Article  CAS  Google Scholar 

  8. M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Grönbeck, and H. Häkkinen (2008). Proc. Natl. Acad. Sci. USA 105, 9157.

    Article  CAS  Google Scholar 

  9. C. E. Briant, B. R. C. Theobald, J. W. White, L. K. Bell, D. M. P. Mingos, and A. J. Welch (1981). J. Chem. Soc. Chem. Commun. 5, 201.

    Article  Google Scholar 

  10. B. K. Teo, X. Shi, and H. Zhang (1992). J. Am. Chem. Soc. 114, 2743.

    Article  CAS  Google Scholar 

  11. G. Schmid, R. Pfeil, R. Boese, F. Bandermann, S. Meyer, G. H. M. Calis, and J. W. A. van der Velden (1981). Chem. Ber. 114, 3634.

    Article  CAS  Google Scholar 

  12. G. Schmid (1992). Chem. Rev. 92, 1709.

    Article  CAS  Google Scholar 

  13. H.-G. Boyen, G. Kästle, F. Weigl, B. Koslowski, C. Dietrich, P. Ziemann, J. P. Spatz, S. Riethmüller, C. Hartmann, M. Möller, G. Schmid, M. G. Garnier, and P. Oelhafen (2002). Science 297, 1533.

    Article  CAS  Google Scholar 

  14. T. Inomata and K. Konishi (2003). Chem. Commun. 1282.

  15. R. Balasubramanian, R. Guo, A. J. Mills, and R. W. Murray (2005). J. Am. Chem. Soc. 127, 8126.

    Article  CAS  Google Scholar 

  16. C. A. Fields-Zinna, M. C. Crowe, A. Dass, J. E. F. Weaver, and R. W. Murray (2009). Langmuir 25, 7704.

    Article  CAS  Google Scholar 

  17. Y. Negishi, W. Kurashige, Y. Niihori, T. Iwasa, and K. Nobusada (2010). Phys. Chem. Chem. Phys. 12, 6219.

    Article  CAS  Google Scholar 

  18. H. Qian, E. Barry, Y. Zhu, and R. Jin (2011). Acta Phys. Chim. Sin. 27, 513.

    CAS  Google Scholar 

  19. Y. Negishi, K. Igarashi, K. Munakata, W. Ohgake, and K. Nobusada (2012). Chem. Commun. 48, 660.

    Article  CAS  Google Scholar 

  20. D.-e. Jiang and S. Dai (2009). Inorg. Chem. 48, 2720.

    Article  CAS  Google Scholar 

  21. K. L. Craighead, A. M. P. Felicissimo, D. A. Krogstad, L. T. J. Nelson, and L. H. Pignolet (1993). Inorg. Chim. Acta. 212, 31.

    Article  CAS  Google Scholar 

  22. M. Laupp and J. Strähle (1994). Angew. Chem. Int. Ed. Engl. 33, 207.

    Article  Google Scholar 

  23. B. K. Teo and H. Zhang (1995). Coord. Chem. Rev. 143, 611.

    Article  CAS  Google Scholar 

  24. M. Walter and M. Moseler (2009). J. Phys. Chem. C 113, 15834.

    Article  CAS  Google Scholar 

  25. A. Seilmeier, B. Kopainsky, and W. Kaiser (1980). Appl. Phys. 22, 355.

    Article  CAS  Google Scholar 

  26. Y. Yanagimoto, Y. Negishi, H. Fujihara, and T. Tsukuda (2006). J. Phys. Chem. B. 110, 11611.

    Article  CAS  Google Scholar 

  27. B. K. Teo, H. Zhang, and X. Shi (1994). Inorg. Chem. 33, 4086.

    Article  CAS  Google Scholar 

  28. B. K. Teo and H. Zhang (2000). J. Organomet. Chem. 614–615, 66.

    Article  Google Scholar 

  29. B. K. Teo and H. Zhang (2001). J. Cluster Sci. 12, 349.

    Article  CAS  Google Scholar 

  30. J. Zheng, J. T. Petty, and R. M. Dickson (2003). J. Am. Chem. Soc. 125, 7780.

    Article  CAS  Google Scholar 

  31. J. Zheng, C. Zhang, and R. M. Dickson (2004). Phys. Rev. Lett. 93, 077402.

    Article  Google Scholar 

  32. Y. Negishi, K. Nobusada, and T. Tsukuda (2005). J. Am. Chem. Soc. 127, 5261.

    Article  CAS  Google Scholar 

  33. M.L. Tran, A.V. Zvyagin, and T. Plakhotnik (2006). Chem. Commun. 2400.

  34. C.-C. Huang, Z. Yang, K.-H. Lee, and H.-T. Chang (2007). Angew. Chem. Int. Ed. Engl. 119, 6948.

    Article  Google Scholar 

  35. C.-A. J. Lin, T.-Y. Yang, C.-H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J.-L. Shen, H.-H. Wang, H.-I. Yeh, W. J. Parak, and W. H. Chang (2009). ACS Nano 3, 395.

    Article  CAS  Google Scholar 

  36. Y. Shichibu and K. Konishi (2010). Small 6, 1216.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The ESI–MS analysis was supported by the Collaborative Research Program of Institute for Chemical Research, Kyoto University. This study was financially supported by a Grant-in-Aid for Scientific Research (No. 21685003) and the “Nanotechnology Network” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Negishi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 278 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurashige, W., Negishi, Y. Synthesis, Stability, and Photoluminescence Properties of PdAu10(PPh3)8Cl2 Clusters. J Clust Sci 23, 365–374 (2012). https://doi.org/10.1007/s10876-011-0437-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0437-8

Keywords

Navigation