Two Novel Chiral Inorganic–Organic Hybrid Materials Containing Preyssler and Wells–Dawson Heteropolyoxometallates with Valine (val), Glycine (gly), and Proline (pro) Amino acids: (Hval)2(Hgly)(H3O)6K5[Na(H2O)P5W30O110]·19.5H2O and (Hpro)6[P2W18O62]·8H2O

Abstract

Two novel chiral organic–inorganic hybrid materials based on two important heteropolyoxometallate namely Preyssler and Wells–Dawson anions, (Hval)2(Hgly)(H3O)6K5[Na(H2O)P5W30O110]·19.5H2O (1) and (Hpro)6[P2W18O62]·8H2O (2), were prepared and characterized by elemental analysis, X-ray diffraction, and infrared spectroscopy. The mixed amino acid as cations, Preyssler and Wells–Dawson as anions held together into a 3D-network through hydrogen-bonding interactions. The most unique structural features of 1 and 2 are their 3D-inorganic infinite tunnel-like framework. It results a weak van der Waals interlayer interaction. This provides a desirable condition to use its potential as a host in a host–guest complex. The chirallity for these two crystal structures, with the space group P21 has been observed. The electrostatic forces and hydrogen bonding, keep these ‘‘adducts’’ stable in the solid state.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    U. Kortz, A. Müller, J. van Slageren, J. Schnack, N. S. Dalal, and M. Dressel (2009). Coord. Chem. Rev. 253, 2315.

    Article  CAS  Google Scholar 

  2. 2.

    M. T. Pope Heteropoly and isopoly oxometalates (Springer-Verlag, Heidelberg, 1983).

    Google Scholar 

  3. 3.

    C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos (1999). Science 286, 945.

    Article  CAS  Google Scholar 

  4. 4.

    M. H. Alizadeh, S. P. Harmalker, Y. Jeannin, J. Martin-Frere, and M. T. Pope (1985). J. Am. Chem. Soc. 107, 2662.

    Article  CAS  Google Scholar 

  5. 5.

    M. H. Alizadeh, K. T. Holman, M. Mirzaei, and H. Razavi (2006). Polyhedron 25, 1567.

    Article  CAS  Google Scholar 

  6. 6.

    M. H. Alizadeh, H. Eshtiagh-Hosseini, and R. Khoshnavazi (2004). J. Mol. Struct. 688, 33.

    Article  CAS  Google Scholar 

  7. 7.

    H. An, Y. Lan, Y. Li, E. B. Wang, N. Hao, D. Xiao, L. Duan, and L. Xu (2004). Inorg. Chem. Commun. 7, 356.

    Article  CAS  Google Scholar 

  8. 8.

    M. H. Alizadeh, M. Mirzaei, and H. Razavi (2008). Mater. Res. Bull. 43, 546.

    Article  CAS  Google Scholar 

  9. 9.

    M. H. Alizadeh, R. Tayebee, and M. Mirzaei (2008). Cryst. Res. Technol. 43, 214.

    Article  CAS  Google Scholar 

  10. 10.

    M. H. Alizadeh, H. Eshtiagh-Hosseini, M. Mirzaei, A. R. Salimi, and H. Razavi (2008). Struct. Chem. 19, 155.

    Article  CAS  Google Scholar 

  11. 11.

    M. H. Alizadeh, M. Mirzaei, A. R. Salimi, and H. Razavi (2009). Mater. Res. Bull. 44, 1515.

    Article  CAS  Google Scholar 

  12. 12.

    F. Yao, Y.-G. Chen, A. R. Salimi, and M. Mirzaei (2011). J. Clust. Sci. 22, 309.

    Article  CAS  Google Scholar 

  13. 13.

    M. H. Alizadeh, H. Eshtiagh-Hosseini, M. Mirzaei, and M. Hosseini-Nejad (2009). Polish. J. Chem. 83, 1583.

    CAS  Google Scholar 

  14. 14.

    X. D. Yang, Y.-G. Chen, M. Mirzaei, A. R. Salimi, and F. Yao (2009). Inorg. Chem. Commun. 12, 195.

    Article  CAS  Google Scholar 

  15. 15.

    P. Y. Chou and G. D. Fasman (1974). Biochemistry 13, 222.

    Article  CAS  Google Scholar 

  16. 16.

    L. Ouahab, M. Bencharif, and D. Grandjean, CR Acad. Sci. Paris 307, série II, 749 (1988) 26

  17. 17.

    L. Ouahab (1998). Coord. Chem. Rev. 178–180, 1501.

    Article  Google Scholar 

  18. 18.

    S. Triki, L. Ouahab, J. Padiou, and D. Grandjean (1989) J. Chem. Soc. Chem. Commun. 1068

  19. 19.

    J. M. Clemente-Juan and E. Coronado (1999). Coord. Chem. Rev. 193–195, 361.

    Article  Google Scholar 

  20. 20.

    P. Le Maguerés, L. Ouahab, S. Golhen, D. Grandjean, O. Pena, J. Jegaden, C. J. Gomez-Garcia, and P. Delhaes (1994). Inorg. Chem. 33, 5180.

    Article  Google Scholar 

  21. 21.

    D. Attanasio and F. Bachechi (1994). Adv. Mater. 6(2), 145.

    Article  CAS  Google Scholar 

  22. 22.

    J. Niu, X. You, C. Duan, H. Fun, and Z. Zhou (1996). Inorg. Chem. 35, 4211.

    Article  CAS  Google Scholar 

  23. 23.

    L. Zhang, Y. Zhou, Z. Yu, G. Fang, and X. You (2001). J. Mol. Struct. 570, 83.

    Article  CAS  Google Scholar 

  24. 24.

    Z. Han, E. Wang, G. Luan, Y. Li, H. Zhang, Y. Duan, C. Hu, and N. Hu (2002). J. Mater. Chem. 12, 1169.

    Article  CAS  Google Scholar 

  25. 25.

    T. Yamase (1998). Chem. Rev. 98, 307.

    Article  CAS  Google Scholar 

  26. 26.

    M. Nikpour, H. Eshtiagh-Hosseini, M. Mirzaei, A. Aghaei Kaju, Y.-G. Chen, and S. Zarinabadi (2010). Chin. Chem. Lett. 21, 501.

    Article  CAS  Google Scholar 

  27. 27.

    M. Nikpour, M. Mirzaei, Y.-G. Chen, A. Aghaei Kaju, and M. Bakavoli (2009). Inorg. Chem. Commun. 12, 879.

    Article  CAS  Google Scholar 

  28. 28.

    H. Y. An, E. B. Wang, D. R. Xiao, Y. G. Li, Z. M. Su, and L. Xu (2006). Angew. Chem. Int. Ed. 45, 904.

    Article  CAS  Google Scholar 

  29. 29.

    G. Baronetti, L. Briand, U. Sedran, and H. Thomas (1998). Appl. Catal. A Gen. 172, 265.

    Article  CAS  Google Scholar 

  30. 30.

    Bruker. SAINTPlus, v. 6.2. Data Reduction and Correction Program (Bruker AXS, Madison, 2001)

  31. 31.

    Bruker. APEX2 software package, v. 1.27. Bruker Molecular Analysis Research Tool (Bruker AXS, Madison, 2005)

  32. 32.

    G. M. Sheldrick SADABS, v. 2.03, Bruker/siemens area detector absorption correction program (Bruker AXS, Madison, 2003).

    Google Scholar 

  33. 33.

    G. M. Sheldrick SHELXTL, v. 6.12, structure determination software suite (Bruker AXS, Madison, 2001).

    Google Scholar 

  34. 34.

    H. Aghabozorg, H. Eshtiagh-Hosseini, A. R. Salimi, and M. Mirzaei (2010). J. Iran. Chem. Soc. 7, 289.

    Article  CAS  Google Scholar 

  35. 35.

    J. T. Rhule, C. L. Hill, D. A. Judd, and R. F. Schinazi (1998). Chem. Rev. 98, 327.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank to the Ferdowsi University of Mashhad for financial support of this article (Grant No. 17897/2).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masoud Mirzaei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 60 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eshtiagh-Hosseini, H., Mirzaei, M. Two Novel Chiral Inorganic–Organic Hybrid Materials Containing Preyssler and Wells–Dawson Heteropolyoxometallates with Valine (val), Glycine (gly), and Proline (pro) Amino acids: (Hval)2(Hgly)(H3O)6K5[Na(H2O)P5W30O110]·19.5H2O and (Hpro)6[P2W18O62]·8H2O. J Clust Sci 23, 345–355 (2012). https://doi.org/10.1007/s10876-011-0434-y

Download citation

Keywords

  • Polyoxometallates
  • Preyssler
  • Wells-Dawson
  • Amino acids
  • Hybrid materials
  • Hydrogen bonding
  • Layered compounds