Skip to main content
Log in

DFT Study of Endohedral Atoms Effect on Electrophilicity of B16N16 Boron Nitride Nanocage: Comparative Analyses

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Endohedral derivatives of B16N16 nanocage (M@B16N16, M = Li+, Na+, K+, Mg2+, Ne, O2−, S2−, F, Cl) and its iso-electronic fullerne M@C32 have been employed to investigate the relation between the trapped atom/ion and electrophilicity of the B16N16 and C32 nanocages. The electrophilicity index, ω, of these endohedral nanocages has been evaluated from the ionization potential and the electron affinity computed by vertical ionization/affinity at the B3LYP/6-311++G(df,pd) level. Obtained results illustrate that the nature of trapped atom/ion affects HOMO-LUMO band gap, global electrophilicity indices and reactivity of B16N16 and C32 nanocages. Encapsulation B16N16 with different atom/ions may be a possible method for modifying HOMO-LUMO energy gap, electrophilicity and so chemical characteristics of and C32 nanocages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162.

    Article  CAS  Google Scholar 

  2. S. Iijima (1991). Nature 354, 56.

    Article  CAS  Google Scholar 

  3. F. Jensen (1993). Chem. Phys. Lett. 209, 417.

    Article  CAS  Google Scholar 

  4. I. Silaghi-Dumitrescu, F. Lara-Ochoa, P. Bishof, and I. Haiduc (1996). J. Mol. Struct. (Theochem) 367, 47.

    Article  CAS  Google Scholar 

  5. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl (1995). Science 269, 966.

    Article  CAS  Google Scholar 

  6. M. Terrones, W. K. Hsu, H. Terrones, J. P. Zhang, S. Ramos, J. P. Hare, R. Castillo, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton (1996). Chem. Phys. Lett. 259, 568.

    Article  CAS  Google Scholar 

  7. A. Loiseau, F. Williame, N. Demoncy, G. Hug, and H. Pascard (1996). Phys. Rev. Lett. 76, 4733.

    Article  Google Scholar 

  8. Y. Saito and M. Maida (1999). J. Phys. Chem. A 103, 1291.

    Article  CAS  Google Scholar 

  9. W. Koch and M. C. Holthausen A chemist’s guide to density functional theory (Wiley, Weinheim, 2000).

    Google Scholar 

  10. S. H. Xu, M. Y. Zhang, Y. Y. Zhao, B. G. Cheng, J. Zhang, and C. C. Sun (2006). Chem. Phys. Lett. 418, 297.

    Article  CAS  Google Scholar 

  11. D. L. Strout (2000). J. Phys. Chem. A 104, 3364.

    Article  CAS  Google Scholar 

  12. D. L. Strout (2004). Chem. Phys. Lett. 383, 95.

    Article  CAS  Google Scholar 

  13. S. S. Alexandre, M. S. C. Mazzoni, and H. Chacham (1999). Appl. Phys. Lett. 75, 61.

    Article  CAS  Google Scholar 

  14. S. S. Alexandre, R. W. Nunes, and H. Chacham (2002). Phys. Rev. B 66, 085.

    Article  Google Scholar 

  15. H. S. Wu, X. H. Xu, F. Q. Zhang, and H. J. Jiao (2003). J. Phys. Chem. A 107, 6609.

    Article  CAS  Google Scholar 

  16. H. S. Wu and H. J. Jiao (2004). Chem. Phys. Lett. 386, 369.

    Article  CAS  Google Scholar 

  17. H. S. Wu, X. H. Xu, D. L. Strout, and H. J. Jiao (2005). J. Mol. Model. 12, 1.

    Article  Google Scholar 

  18. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899.

    Article  CAS  Google Scholar 

  19. F. Weinhold and C. R. Landis (2001). Chem. Educ. Res. Pract. Eur. 2, 91.

    Article  CAS  Google Scholar 

  20. F. Weinhold Natural bond orbital methods. in P. V. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, and P. A. Kollman (eds.), Encyclopedia of computational chemistry (Wiley, Chichester, UK, 1998).

    Google Scholar 

  21. F. Weinhold NBO 5.0 program manual. Theoretical chemistry institute and Department of chemistry (University of Wisconsin, Madison, WI, 2001), p. 53706.

    Google Scholar 

  22. A. R. Oliaey, A. Boshra, and M. Khavary (2010). Physica E 42, 2314.

    Article  CAS  Google Scholar 

  23. V. Pophristic and L. Goodman (2001). Nature 411, 565.

    Article  CAS  Google Scholar 

  24. L. Goodman, V. Pophristic, and F. Weinhold (1999). Acc. Chem. Res. 32, 983.

    Article  CAS  Google Scholar 

  25. A. E. Reed and F. Weinhold (1985). J. Am. Chem. Soc. 107, 1919.

    Article  CAS  Google Scholar 

  26. A. E. Reed and F. Weinhold (1986). J. Am. Chem. Soc. 108, 3586.

    Article  CAS  Google Scholar 

  27. I. V. Alabugin, M. Manoharan, S. Peabody, and F. Weinhold (2003). J. Am. Chem. Soc. 125, 5973.

    Article  CAS  Google Scholar 

  28. A. E. Reed, F. Weinhold, L. A. Curtiss, and D. J. Pochatko (1986). J. Chem. Phys. 86, 5687.

    Article  Google Scholar 

  29. A. E. Reed and Pv. R. Schleyer (1987). J. Am. Chem. Soc. 109, 7362.

    Article  CAS  Google Scholar 

  30. U. Salzner and P. R. Schleyer (1993). J. Am. Chem. Soc. 115, 10231.

    Article  CAS  Google Scholar 

  31. D. Suárez, T. L. Sordo, and J. A. Sordo (1996). J. Am. Chem. Soc. 118, 9850.

    Article  Google Scholar 

  32. N. K. Banavali and A. D. MacKerell Jr (2001). J. Am. Chem. Soc. 123, 6747.

    Article  CAS  Google Scholar 

  33. E. D. Glendening, R. Faust, A. Streitwieser, K. P. C. Vollhardt, and F. Weinhold (1993). J. Am. Chem. Soc. 115, 10952.

    Article  CAS  Google Scholar 

  34. M. Bruschi, M. G. Giuffreda, and H. P. Lüthi (2002). Chem. Eur. J. 8, 4216.

    Article  CAS  Google Scholar 

  35. L. Fenga, Y. Lua, J. Kongb, and Zh. Suc (2011). Comput. Theor. Chem. 964, 56.

    Article  Google Scholar 

  36. B. Napolion and Q. L. Williams (2010). Chem. Phys. Lett. 490, 210.

    Article  CAS  Google Scholar 

  37. X. Cui, J.-F. Jia, B.-S. Yang, P. Yang, and H.-Sh. Wu (2010). J. Mol. Struct. (Theochem) 953, 1.

    Article  CAS  Google Scholar 

  38. X. Cui, B.-Sh. Yang, and H.-S. Wu (2010). J. Mol. Struct. (Theochem) 941, 144.

    Article  CAS  Google Scholar 

  39. B. Yin, G. Wang, N. Sa, and Y. Huang (2008). J. Mol. Model. 14, 789.

    Article  CAS  Google Scholar 

  40. R. Li, L.-H. Gan, L. Lin, J.-Q. Zhao, and J. Liu (2009). J. Mol. Struct. (Theochem) 911, 75.

    Article  CAS  Google Scholar 

  41. N. Karachi, A. Boshra, and S. Jadidi (2011). Struct. Chem. 22, 805.

    Article  CAS  Google Scholar 

  42. V. Nirmala and P. Kolandaivel (2007). J. Mol. Struct. (Theochem) 817, 137.

    Article  CAS  Google Scholar 

  43. X. Song, Sh. Liu, H. Yan, and Zh. Gan (2009). Physica E 41, 626.

    Article  CAS  Google Scholar 

  44. P. A. Gauden and M. Wisniewski (2010). Catal. Today 150, 147.

    Article  CAS  Google Scholar 

  45. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, in: GAUSSIAN 98, Gaussian, Inc., Pittsburgh, PA (1998).

  46. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  47. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  48. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Article  CAS  Google Scholar 

  49. J. P. Perdew, K. Burke, and M. Ernzerhof (1997). Phys. Rev. Lett. 78, 1396.

    Article  CAS  Google Scholar 

  50. C. Adamo and V. Barone (1999). J. Chem. Phys. 110, 6158.

    Article  CAS  Google Scholar 

  51. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold NBO Version 3.1 (University of Wisconsin, Madison, TCI, 1998).

    Google Scholar 

  52. C.-G. Zhan, J. A. Nichols, and D. A. Dixon (2003). J. Phys. Chem. A 107, 4184.

    Article  CAS  Google Scholar 

  53. R. G. Parr, L. von Szentpaly, and S. Liu (1999). J. Am. Chem. Soc. 121, 1922.

    Article  CAS  Google Scholar 

  54. V. S. Gurin, Fuller. Nanotub. Car. N. 13, Suppl 1 (2005).

  55. J. Almlof, T. Helgaker, and P. R. Taylor (1988). J. Phys. Chem. 92, 3029.

    Article  CAS  Google Scholar 

  56. T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. R. Schleyer (1983). J. Comput. Chem. 4, 294.

    Article  CAS  Google Scholar 

  57. T. John, S. Dennis, and H. Shinohara (1998). Appl. Phys. A 66, 243.

    Article  CAS  Google Scholar 

  58. C.-Y. Zhang, H.-Sh. Wu, and H. Jiao (2007). J. Mol. Model. 13, 499.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asadollah Boshra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boshra, A., Jadidi, S., Goudarzi, M. et al. DFT Study of Endohedral Atoms Effect on Electrophilicity of B16N16 Boron Nitride Nanocage: Comparative Analyses. J Clust Sci 23, 297–310 (2012). https://doi.org/10.1007/s10876-011-0430-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0430-2

Keywords

Navigation