Skip to main content
Log in

Structural, Electronic, and Magnetic Properties of MB n (M = Y, Zr, Nb, Mo, Tc, Ru, n ≤ 8) Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The geometries, stabilities, electronic, and magnetic properties of MB n (M = Y, Zr, Nb, Mo, Tc, Ru, n ≤ 8) clusters have been systematically investigated by density functional theory. It is shown that the lowest energy structures of MB n (n ≤ 3) clusters can be obtained by substituting one B atom in the lowest energy structures of B n+1 clusters in most cases. After n ≥ 8, the 3D configurations prevail and become the lowest-energy structures. The second-order energy difference and the dissociation energy show YB7, ZrB7, NbB6, MoB6, TcB6, RuB6 clusters possess relatively higher stabilities. The doped-M atoms improve the chemical activity of the host clusters in most cases; but different M atom has different effect on B atom’s electronic structure. The binding strengths are strong between M and B n , which plays an important role in the M–B growth mechanisms. It is interesting that the relative orientation between the magnetic moments of the M (M = Zr, Nb, Mo, Tc, Ru) atoms and those of its neighboring B atoms exhibits ferromagnetic or antiferromagnetic alignment in contrast to the ferromagnetic alignment of YB n .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. J. F. Harris (ed.) Carbon Nanotubes and Related Structures: New Materials for the Twenty First Century (University of Ontario Press, Cambridge, 1999).

    Google Scholar 

  2. S. Ciraci, S. Dag, T. Yildirim, O. Gulseren, and R. T. Senger (2004). J. Phys. Condens. Matter. 16, R901.

    Article  CAS  Google Scholar 

  3. G. S. Zakharova, V. L. Volkov, V. V. Ivanovskaya, and A. L. Ivanovskii (2005). Usp. Khim. 74, 651.

    Google Scholar 

  4. E. Durgun, S. Dag, V. M. K. Bagci, O. Gulseren, T. Yildirim, and S. Ciraci (2003). Phys. Rev. B 67, R201401.

    Article  Google Scholar 

  5. C. Cuerretpiecourt, Y. Lebouar, A. Loiseau, and H. Pascard (1994). Nature 372, 761.

    Article  Google Scholar 

  6. N. Grobert, W. K. Hsu, Y. Q. Zhu, J. P. Hare, H. W. Kroto, D. R. M. Walton, M. Terrones, H. Terrones, Ph. Redlich, M. Rühle, R. Escudero, and F. Morales (1999). Appl. Phys. Lett. 75, 3363.

    Article  CAS  Google Scholar 

  7. A. Leonhardt, A. Ritschel, R. Kozhuharova, A. Graff, T. Mühl, R. Huhle, I. Mönch, D. Elefant, and C. M. Schneider (2003). Diamond Relat. Mater. 12, 790.

    Article  CAS  Google Scholar 

  8. N. Grobert, M. Terrones, A. J. Osborne, H. Terrones, W. K. Hsu, S. Trasobares, Y. Q. Zhu, J. P. Hare, H. W. Kroto, and D. R. M. Walton (1998). Appl. Phys. A: Mater. Sci. Process. 67, 595.

    Article  CAS  Google Scholar 

  9. V. V. Ivanovskaya, C. KÄohler, and G. Seifert (2007). Phys. Rev. B 75, 075410.

    Article  Google Scholar 

  10. X. B. Yang, Y. Ding, and J. Ni (2008) Phys. Rev. B 77, 041402(R).

  11. X. Liu, G. F. Zhao, L. J. Guo, Q. Jing, and Y. H. Luo (2007). Phys. Rev. A 75, 063201.

    Article  Google Scholar 

  12. Z. Yang, Y. L. Yan, W. J. Zhao, X. L. Lei, G. X. Ge, and Y. H. Luo (2007). Acta Phys. Sin 56, (5), 2590.

    Google Scholar 

  13. Z. G. Fang and H. Z. Hu (2006). Chin. J. Inorg. Chem. 22, 598.

    CAS  Google Scholar 

  14. M. Deshpande, D. G. Kanhere, and R. Pandey (2005). Phys. Rev. A 71, 063202.

    Article  Google Scholar 

  15. Q. Sun, X. G. Gong, Q. Q. Zheng, and G. H. Wang (1996). Acta Phys. Sin. 45, 1146.

    CAS  Google Scholar 

  16. J. Teyssier, A. B. Kuzmenko, D. van der Marel, and F. Marsiglio (2007). Phys. Rev. B 75, 134503.

    Article  Google Scholar 

  17. B. Delley (1990). J. Chem. Phys. 92, 508.

    Article  CAS  Google Scholar 

  18. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  19. R. S. Mulliken (1955). J. Chem. Phys. 23, 1841.

    Article  CAS  Google Scholar 

  20. J. R. Lombardi and B. Davis (2002). Chem. Rev. 102, 2431.

    Article  CAS  Google Scholar 

  21. Z. J. Wu (2004). Chem. Phys. Lett. 383, 251.

    Article  CAS  Google Scholar 

  22. D. R. Lide (ed),CRC Handbook of Chemistry and Physics, 79th (CRC Press, NY, 1998) pp. 9–80.

  23. P. J. Bruna and J. S. Wright (1990). J. Phys. Chem. 94, 1774.

    Article  CAS  Google Scholar 

  24. A. Abdurahman, A. Skukla, and G. Seifert (2002). Phys. Rev. B 66, 155423.

    Article  Google Scholar 

  25. I. Boustani (1997). Phys. Rev. B 55, 16426.

    Article  CAS  Google Scholar 

  26. J. G. Yao, X. W. Wang, and Y. X. Wang (2008). Chem. Phys. 351, 1.

    Article  CAS  Google Scholar 

  27. B. I. Dunlap (1990). Phys. Rev. A 41, 5691.

    Article  CAS  Google Scholar 

  28. Z. Q. Li and B. L. Gu (1993). Phys. Rev. A 47, 13611.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge computational support from the institute of theoretical physics of Henan University. Project supported by foundation start up for high level talents of shihezi university, china (Grant No: RCZX200747).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-xian Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, Gx., Jing, Q., Cao, Hb. et al. Structural, Electronic, and Magnetic Properties of MB n (M = Y, Zr, Nb, Mo, Tc, Ru, n ≤ 8) Clusters. J Clust Sci 23, 189–202 (2012). https://doi.org/10.1007/s10876-011-0419-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0419-x

Keywords

Navigation