Abstract
Density functional theory calculations (DFT), as well as hybrid methods (B3LYP) for B18N18-[CoF6]3− complex have been carried out to study the non-bonded interaction. The geometry of the B18N18 has been optimized at B3LYP method with EPR-II basis set and geometry of the [CoF6]3− have been optimized at B3LYP method with Def2-TZVP basis set and Stuttgart RSC 1997 Effective Core Potential. The electromagnetic interactions of the [CoF6]3− molecule embedded in the B18N18 Nano ring have been investigated at B3LYP and total atomic charges, spin densities, dipole moment and isotropic Fermi coupling constants parameters in different loops and bonds of the B18N18-[CoF6]3− system have been calculated. Also NBO analysis such as electronic delocalization between donor and acceptor bonds has been studied by DFT method. Then we have been investigated the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) for the lowest energy have been derived to estimate the structural stability of the B18N18-[CoF6]3− system, and the coefficients of s, p and d orbitals of Co-F bonds involved in B18N18-[CoF6]3−.Thus, hybridization of Co and F atoms can be distinguished based on these NBO data. The Gaussian quantum chemistry package is used for all calculations.
This is a preview of subscription content, access via your institution.

Abbreviations
- DFT:
-
Density functional theory
- EPR:
-
Electron paramagnetic resonance
- HOMOL:
-
Highest occupied molecular orbital
- LUMO:
-
Lowest unoccupied molecular orbital
- ECP:
-
Effective core potential
- NICS:
-
Nuclear independent chemical shift
- LCAO:
-
Linear combination of atomic orbitals
References
P. W. Fowler, K. M. Rogers, G. Seifert, M. Terrones, and H. Terrones (1999). Chem. Phys. Lett. 299, 359.
Y. Liu, Z. Wenli, B. B. Isaac, and J. E. Boggs (2009). J. Chem. Phys. 30, 184305.
A. Loiseau, F. Willaime, N. Demoncy, N. Schramchenko, and G. Hug (1998). Carbon 36, 743–752.
M. L. Sun, Z. Slanina, and S. L. Lee (1995). Chem. Phys. Lett. 233, 279.
M. Monajjemi, H. Aghaie, and F. Naderi (2007). Biochemistry (Moscow) 72, 799.
O. Takeo, K. Masaki, K. Hidehiko, and N. Ichihito (2001). Int. J. Inorg. Mater. 3, 597.
S. H. Xu, M. Y. Zhang, Y. Y. Zhao, B. G. Cheng, J. Zhang, and C. C. Sun (2006). Chem. Phys. Lett. 418, 297.
D. L. Strout (2000). J. Phys. Chem. A 104, 3364.
D. L. Strout (2001). J. Phys. Chem. A 105, 261.
D. L. Strout (2004). Chem. Phys. Lett. 383, 95.
S. S. Alexandre, M. S. C. Mazzoni, and H. Chacham (1999). Appl. Phys. Lett. 75, 61.
S. S. Alexandre, R. W. Nunes, and H. Chacham (2002). Phys. Rev. B 66, 085.
H. S. Wu and H. J. Jiao (2004). Chem. Phys. Lett. 386, 369.
H. S. Wu, X. H. Xu, D. L. Strout, and H. J. Jiao (2005). J. Mol. Model. 12, 1.
K. W. Rogers, P. W. Fowler, and G. Seifert (2000). Chem. Phys. Lett. 332, 43.
M. Monajjemi, L. Mahdavian, and F. Mollaamin (2008). Bull. Chem. Soc. Ethio. 22, 1.
F. Mollaamin, S. Gharibe, and M. Monajjemi (2011). Int. J. Phys. Sci. 6, 1496.
M. Monajjemi, H. Chegini, F. Mollaamin, and P. Farahani (2011). Fullerenes, Nanotub Carbon Nanostructure 19, 469.
F. Mollaamin, F. Najafi, M. Khaleghian, B. Khalili Hadad, and M. Monajjemi (2011). Fullerenes, Nanotub Carbon Nanostructures 19, 653.
L. B. Knight Jr, D. W. Hill, T. J. Kirk, and C. A. Arrington (1992). J. Phys. Chem. 96, 555.
Z. Slanina, J. M. L. Martin, J. P. Franqois, and R. Gijbels (1993). Chem. Phys. Lett. 201, 54.
Z. Slanina, J. M. L. Martin, J. P. Franqoisand, and R. Gijbels (1993). Chem. Phys. 178, 77.
M. Monajjemi, L. Mahdavian, F. Mollaamin, and M. Khaleghian (2009). Rus. J. Inorg. Chem. 54, 1465–1473.
S. Iijima and T. Ichihashi (1993). Nature 363, 603.
P. M. Ajayan (1999). Chem. Rev. 99, 1787.
R. F. Curl and R. E. Smalley (1988). Science 242, 1017.
H. Y. Zhu, D. J. Klein, W. A. Seitz, and N. H. March (1995). Inorg. Chem. 34, 1377.
S. M. Glauciete and G. Edgardo (2005). Chem. Phys. Lett. 409, 29.
D. K. Hoffman, R. Ruedenberg, and J. G. Verkade (1977). Struct. Bond. 33, 57.
M. Monajjemi, V. S. Lee, M. Khaleghian, B. Honarparvar, and F. Mollaamin (2010). J. Phys. Chem. C 114, 15315.
A. D. Becke (1993). J. Chem. Phys. 98, 5648.
C. Lee, W. Yang, and R. G. Parr (1998). Phys. Rev. B 37, 785.
D. Golberg, Y. Bando, O. Stephan, and K. Kurashima (1998). Appl. Phys. Lett. 73, 2441.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Raghavachari, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople (1998) Gaussian 98 Revision A.7, Gaussian, Inc., Pittsburgh.
K. Oku, A. Nishiwaki, I. Narita, and M. Gonda (2003). Chem. Phys. Lett. 380, 620.
E. C. Behrman, R. K. Foehrweiser, J. R. Myers, B. R. French, and M. E. Zandler (1994). Phys. Rev. A 49, R1543.
R. B. Zhang, T. Z. Huyskensd, A. Ceulemeans, and M. T. Nguyen (2005). Chem. Phys. 316, 35.
J. P. Foster and F. Weinhold (1980). J. Am. Chem. Soc. 102, 7211.
M. Monajjemi, M. T. Azad, H. H. Haeri, K. Zare, and Sh. Hamedani (2003). J. Chem. Res. 1, (8), 454.
L. Goodman, V. Pophristic, and F. Weinhold (1999). Acc. Chem. Res. 32, 983.
A. E. Reed and F. Weinhold (1985). J. Am. Chem. Soc. 107, 1919.
W. K. Myers, C. P. Scholes, and D. L. Tierney (2009). J. Am. Chem. Soc. 9, 131.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Monajjemi, M., Khaleghian, M. EPR Study of Electronic Structure of [CoF6]3−and B18N18 Nano Ring Field Effects on Octahedral Complex. J Clust Sci 22, 673–692 (2011). https://doi.org/10.1007/s10876-011-0414-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10876-011-0414-2
Keywords
- DFT
- Dipole moment
- ECP
- EPR-II basis set
- HOMO
- LUMO
- NICS
- LCAO
- Hyperfine properties