Skip to main content
Log in

Density-Functional Theory of Vibrations in Ni1−x V x Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We have performed the calculation of the vibrational frequencies, Fermi energy and binding energy for several clusters of Ni and vanadium atoms by using the first principles. The calculations are performed by using the density-functional theory in the local-density approximation with spin polarized orbitals. The calculation of vibrational frequencies shows that some of the clusters have positive vibrational frequencies which describe the oscillations of the stable clusters. The negative vibrational frequencies indicate that these clusters are instable with respect to these vibrations when no energy of this frequency is supplied. We find that for vanadium concentration less than 11.1% the clusters of Ni and V atoms are not stable. Hence ferromagnetism in Ni is predicted below 11.1% vanadium. We find the vibrational frequencies of several clusters for which the vanadium concentration is more than 11.1%. We are able to find a phase transition by use of quantum mechanics alone without the use of classical mechanical variables or thermodynamic variables such as temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. V. Lohneysen, A. Rosch, M. Vojta, and P. Wolfle (2007). Rev. Mod. Phys. 79, 1015.

    Article  Google Scholar 

  2. A. J. Millis (1993). Phys. Rev. B 48, 7183.

    Article  CAS  Google Scholar 

  3. S. Ubaid-Kassis, T. Vojta, and A. Schroeder (2010). Phys. Rev. Lett. 104, 066402.

    Article  Google Scholar 

  4. M. Nicklas, M. Brando, G. Knebel, F. Mayr, W. Trinkl, and A. Loidl (1999). Phys. Rev. Lett. 82, 4268.

    Article  CAS  Google Scholar 

  5. C. Pfleiderer, G. C. McMullan, S. R. Julian, and G. G. Lonzarich (1997). Phys. Rev. B 55, 8330.

    Article  CAS  Google Scholar 

  6. M. Uhlarz, C. Pfleiderer, and S. M. Hayden (2004). Phys. Rev. Lett. 93, 256404.

    Article  CAS  Google Scholar 

  7. J. Hertz (1976). Phys. Rev. B 14, 1165.

    Article  CAS  Google Scholar 

  8. V. A. Sidorov, V. N. Krasnorussky, A. E. Petrova, A. N. Utyuzh, W. M. Yuhasz, T. A. Lograsso, J. D. Thompson, and S. M. Stishov (2011). Phys. Rev. B 83, 060412.

    Article  Google Scholar 

  9. J. F. DiTusa, R. G. Goodrich, N. Harrison, and E. S. Choi (2010). Phys. Rev. B 82, 075114.

    Article  Google Scholar 

  10. J. Spalek, A. Kozlowski, Z. Tarnawski, Z. Kakol, Y. Fukami, F. Ono, R. Zach, L. J. Spalek, and J. M. Honig (2008). Phys. Rev. B 78, 100401.

    Article  Google Scholar 

  11. H. Miyagawa, G. Oomi, M. Ohashi, I. Satoh, T. Komatsubara, M. Hedo, and Y. Uwatoko (2008). Phys. Rev. B 78, 064403.

    Article  Google Scholar 

  12. W. Kohn and L. J. Sham (1965). Phys. Rev. 140, A1133.

    Article  Google Scholar 

  13. D. Lopez-Duran, M. P. De Lara-Castells, G. Delgado-Barrio, P. Villarreal, C. Di Paola, F. A. Gianturco, and J. Jellinck (2004). Phys. Rev. Lett. 93, 053401.

    Article  CAS  Google Scholar 

  14. M. Mahendran (2005). J. Phys. Chem. Solids 66, 977.

    Article  CAS  Google Scholar 

  15. M. Mahendran and K. Iyakutti (2000). Scripta Mater. 42, 715.

    Article  CAS  Google Scholar 

  16. S. Ghosh, Q. Wang, G. P. Das, and P. Jena (2010). Phys. Rev. B 81, 235215.

    Article  Google Scholar 

  17. Zs. Rak, S. D. Mahanti, K. C. Mandal, and N. C. Fernelius (2010). Phys. Rev. B 82, 155203.

    Article  Google Scholar 

  18. F. Shimojo, S. Ohmura, R. K. Kalia, A. Nakano, and P. Vashishta (2010). Phys. Rev. Lett. 104, 126102.

    Article  Google Scholar 

  19. V. Radhika Devi, M. Bindu Madhavi, E. L. Srihari, K. N. Shrivastava, and P. Boolchand (2005). J. Non-Cryst. Solids 351, 489.

    Article  CAS  Google Scholar 

  20. H. A. Kassim, I. A. Jalil, N. Yusof, V. R. Devi, and K. N. Shrivastava (2007). J. Non-Cryst. Solids 353, 111.

    Article  CAS  Google Scholar 

  21. N. A. Jemali, H. A. Kassim, V. R. Devi, and K. N. Shrivastava (2008). J. Non-Cryst. Solids 354, 1744.

    Article  CAS  Google Scholar 

  22. A. N. Rosli, N. A. Zabidi, H. A. Kassim, and K. N. Shrivastava (2010). J. Non-Cryst. Solids 356, 428.

    Article  CAS  Google Scholar 

  23. A. N. Rosli, N. A. Zabidi, H. A. Kassim, and K. N. Shrivastava (2010). J. Cluster Sci. 21, 197.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keshav N. Shrivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosli, A.N., Zabidi, N.A., Kassim, H.A. et al. Density-Functional Theory of Vibrations in Ni1−x V x Clusters. J Clust Sci 22, 491–499 (2011). https://doi.org/10.1007/s10876-011-0388-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0388-0

Keywords

Navigation