Skip to main content
Log in

Polyoxometalates–Directed Assembly of Inorganic–Organic Hybrid Compounds with Copper Multinuclear Nano-cluster Based on Flexible Double Tetrazole-based Thioether

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two new inorganic–organic hybrid compounds constructed from different polyoxometalates (POMs) and copper multinuclear clusters, [Cu(bmte)(H2Mo8O26)0.5]·3H2O (1) and [Cu3(bmte)3(HSiMo12O40)]·H2O (2) (bmte = 1,2-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)ethane), have been synthesized under hydrothermal conditions with a flexible double tetrazole-based thioether and characterized by IR, TG and single-crystal X-ray diffraction analyses. In compound 1, two bmte ligands chelate two CuI ions with three N atoms to form a binuclear nano-scale subunit [Cu2(bmte)2]2+, then the binuclear CuI subunits are connected by [Mo8O26]4− anions to build a one dimensional (1D) chain. In compound 2, a trinuclear nano-scale subunit [Cu3(bmte)3]3+ constructed from three CuI ions and three bmte ligands has been obtained, and the adjacent trinuclear subunits are linked by [SiMo12O40]4− anions to form a “zipper” 1D chain. The adjacent chains of the title compounds are ultimately extended into 2D layers by hydrogen bonds between bmte and POMs. The structural difference of the two compounds indicates that the POMs play an important structure-directed role on the final networks. In addition, the electrochemical behavior of 2-modified carbon paste electrode (2-CPE) and its electrocatalytic reduction of nitrite have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. M. Khenkin, L. Weiner, Y. Wang, and R. Neumann (2001). J. Am. Chem. Soc. 123, 8531.

    Article  CAS  Google Scholar 

  2. A. Müller, S. Q. N. Shah, H. Bögge, and M. Schmidtmann (1999). Nature 397, 48.

    Article  Google Scholar 

  3. O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim (2003). Nature 423, 705.

    Article  CAS  Google Scholar 

  4. F. Hussain, U. Kortz, B. Ketia, L. Nadjo, and M. T. Pope (2006). Inorg. Chem. 45, 761.

    Article  CAS  Google Scholar 

  5. M. I. Khan, E. Yohannes, R. Nome, S. Ayesh, V. O. Golub, C. J. O’Connor, and R. J. Doedens (2004). Chem. Mater. 16, 5273.

    Article  CAS  Google Scholar 

  6. P. Kögerler and L. Cronin (2005). Angew. Chem. Int. Ed. 44, 844.

    Article  Google Scholar 

  7. M. Alam, Y. S. Kim, S. Ogawa, A. Tsuda, N. Ishii, and T. Aida (2008). Angew. Chem. Int. Ed. 11, 2070.

    Article  Google Scholar 

  8. J. G. Haasnoot (2000). Coord. Chem. Rev. 200, 131.

    Article  Google Scholar 

  9. M. H. Klingele and S. Brooker (2003). Coord. Chem. Rev. 241, 119.

    Article  CAS  Google Scholar 

  10. U. Beckman and S. Brooker (2003). Coord. Chem. Rev. 245, 17.

    Article  Google Scholar 

  11. W. Ouellette, A. V. Prosvirin, V. Chieffo, K. R. Dunbar, B. Hudson, and J. Zubieta (2006). Inorg. Chem. 45, 9346.

    Article  CAS  Google Scholar 

  12. X. Y. Wu, X. F. Kuang, Z. G. Zhao, S. C. Chen, Y. M. Xie, R. M. Yu, and C. Z. Lu (2010). Inorg. Chim. Acta 363, 1236.

    Article  CAS  Google Scholar 

  13. Q. G. Zhai, C. Z. Lu, Q. Z. Zhang, X. Y. Wu, X. J. Xu, S. M. Chen, and L. J. Chen (2006). Inorg. Chim. Acta 359, 3875.

    Article  CAS  Google Scholar 

  14. Q. G. Zhai, X. Y. Wu, S. M. Chen, Z. G. Zhao, and C. Z. Lu (2007). Inorg. Chem. 46, 5046.

    Article  CAS  Google Scholar 

  15. X. L. Wang, C. Qin, E. B. Wang, Z. M. Su, Y. G. Li, and L. Xu (2006). Angew. Chem. Int. Ed. 45, 7411.

    Article  CAS  Google Scholar 

  16. X. L. Wang, Y. F. Bi, B. K. Chen, H. Y. Lin, and G. C. Liu (2008). Inorg. Chem. 47, 2442.

    Article  CAS  Google Scholar 

  17. X. L. Wang, H. Y. Lin, Y. F. Bi, B. K. Chen, and G. C. Liu (2008). J. Solid State Chem. 181, 556.

    Article  CAS  Google Scholar 

  18. X. L. Wang, B. K. Chen, G. C. Liu, H. Y. Zhao, H. Y. Lin, and H. L. Hu (2009). J. Solid State Sci. 11, 61.

    Article  CAS  Google Scholar 

  19. X. L. Wang, B. K. Chen, G. C. Liu, H. Y. Lin, and H. L. Hu (2010). J. Organomet. Chem. 695, 827.

    Article  CAS  Google Scholar 

  20. X. L. Wang, H. L. Hu, G. C. Liu, H. Y. Lin, and A. X. Tian (2010). Chem. Commun. 46, 6485.

    Article  CAS  Google Scholar 

  21. J. B. She, G. F. Zhang, Y. L. Dou, X. Z. Fan, and J. Z. Li (2006). Acta. Cryst. E 62, o402.

    Article  Google Scholar 

  22. X. L. Wang, Z. H. Kang, E. B. Wang, and C. W. Hu (2002). Mater. Lett. 56, 393.

    CAS  Google Scholar 

  23. G. M. Sheldrick (2008). Acta Crystallogr. Sect. A: Found. Crystallogr. 64, 112.

    Article  Google Scholar 

  24. I. D. Brown and D. Altermatt (1985). Acta Crystallogr. B 41, 244.

    Article  Google Scholar 

  25. J. Q. Sha, J. Peng, H. S. Liu, J. Chen, B. X. Dong, A. X. Tian, and Z. M. Su (2007). Eur. J. Inorg. Chem. 9, 1268.

    Article  Google Scholar 

  26. J. X. Meng, Y. Lu, Y. G. Li, H. Fu, and E. B. Wang (2009). Cryst. Growth. Des. 9, 4116.

    Article  CAS  Google Scholar 

  27. L. J. Bellamy The Infrared Spectra of Complex Molecules (Wiley, New York, 1958).

    Google Scholar 

  28. K. Nakamoto Infrared Spectra and Raman Spectra of Inorganic and Coordination Compound (John Wiley&Sons, New York, 1986).

    Google Scholar 

  29. B. X. Dong and Q. Xu (2009). Cryst. Growth. Des. 9, 2776.

    Article  CAS  Google Scholar 

  30. S. Dong, X. Xi, and M. Tian (1995). J. Electroanal. Chem. 385, 227.

    Article  Google Scholar 

  31. M. Sadakane and E. Steckhan (1998). Chem. Rev. 98, 219.

    Article  CAS  Google Scholar 

  32. S. L. Li, Y. Q. Lan, J. F. Ma, J. Yang, J. Liu, Y. M. Fu, and Z. M. Su (2008). Dalton Trans. 15, 2015.

    Article  Google Scholar 

  33. J. Chen, J. Q. Sha, J. Peng, Z. Y. Shi, B. X. Dong, and A. X. Tian (2007). J. Mol. Struct. 846, 128.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NCET-09-0853, National Natural Science Foundation of China (20871022) and Foundation of Liaoning Province (2009R03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 598 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Wang, Y., Liu, G. et al. Polyoxometalates–Directed Assembly of Inorganic–Organic Hybrid Compounds with Copper Multinuclear Nano-cluster Based on Flexible Double Tetrazole-based Thioether. J Clust Sci 22, 211–223 (2011). https://doi.org/10.1007/s10876-011-0374-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0374-6

Keywords

Navigation