Journal of Cluster Science

, Volume 21, Issue 4, pp 837–856 | Cite as

Reactivity of Pd3(dppm)3(CO) n+ and Pd3(dppm)3(CO)(RCCR) n+ (n = 0, +1, +2) Towards F. Evidence of Reactive Intermediates and X-Ray Structure of [Pd3(dppm)3(MeO2CC≡CCO2Me)(F)]PF6

  • Sophie Fournier
  • Cyril Cugnet
  • Alain Vallat
  • Charles H. Devillers
  • Yoann Rousselin
  • Marek M. Kubicki
  • Dominique Lucas
  • Yves Mugnier
  • Pierre D. Harvey
Original Paper


The reactivity of the trinuclear palladium cluster [Pd3(dppm)3(CO)] n+ (dppm = bis(diphenylphosphinomethane); n = 2, 1) towards F was investigated by electrochemical and spectroscopic methods. The reaction depends on the charge of the cluster. The chemical reduction of the cluster dication is observed in the presence of F generating the paramagnetic monocationic cluster. Spin-trapping experiments with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) provided evidence for the radical F as an intermediate. In a similar manner to the dication, the monocationic cluster [Pd3(dppm)3(CO)]+ is also reduced, but in a slower process, by the F ion to produce [Pd3(dppm)3(CO)]0. Additionally, the alkyne cluster adducts [Pd3(dppm)3(CO)(RCCR)] n+ (n = 2, 1; R = CO2Me) are also reactive towards F. Particularly, the dication adduct leads to a metastable fluoride adduct [Pd3(dppm)3(CO)(RCCR)(F)]+. The electroreductive behavior of this adduct involves electron-transfer steps and F exchange equilibriums, for which digital simulation enables the extraction of the thermodynamic parameters (standard potentials and equilibrium constants). Concurrently, the monocation adduct [Pd3(dppm)3(CO)(RCCR)]+ with F, leads to a disproponation generating 0.5 equiv. of [Pd3(dppm)3(CO)(RCCR)(F)]+ and 0.5 equiv. of [Pd3(dppm)3(CO)(RCCR)]0. The former slowly evolves to [Pd3(dppm)3(RCCR)(F)]+, which was described by X-ray diffraction method.

Graphical Abstract

[Pd3(ddpm)3(CO)] n+ (n = 2, 1) are reduced by F to form [Pd3(dppm)3(CO)](n+)−1. Concurrently, [Pd3(dppm)3(CO)(RCCR)] n+ (n = 2, 1) with F generate the corresponding adducts [Pd3(dppm)3(CO)(RCCR)(F)](n+)−1, but, in the case of n = 1, disproponation is observed into [Pd3(dppm)3(CO)(RCCR)(F)]+ and [Pd3(dppm)3(CO)(RCCR)]0.


Cluster Palladium Fluoride Alkyne Molecular electrochemistry 



Financial support by the Natural Sciences and Engineering Research Council (Canada), Centre National de Recherche Scientifique (CNRS, UMR 5260) and Université de Bourgogne (France) is gratefully acknowledged.

Supplementary material

10876_2010_338_MOESM1_ESM.docx (83 kb)
Supplementary material 1 (DOCX 13 kb)


  1. 1.
    P. D. Harvey, Y. Mugnier, D. Lucas, D. Evrard, F. Lemaître, and A. Vallat (2004). J. Clust. Sci. 15, 63–90.CrossRefGoogle Scholar
  2. 2.
    D. Lucas, F. Lemaître, B. Gallego-Gomez, C. Cugnet, P. Richard, Y. Mugnier, and P. D. Harvey (2005). Eur. J. Inorg. Chem. 1011–1018.Google Scholar
  3. 3.
    D. Brevet, Y. Mugnier, F. Lemaître, D. Lucas, S. Samreth, and P. D. Harvey (2003). Inorg. Chem. 42, 4910–4917.CrossRefGoogle Scholar
  4. 4.
    F. Lemaitre, D. Lucas, D. Brevet, A. Vallat, P. D. Harvey, and Y. Mugnier (2002). Inorg. Chem. 41, 2368–2373.CrossRefGoogle Scholar
  5. 5.
    D. Brevet, D. Lucas, H. Cattey, F. Lemaitre, Y. Mugnier, and P. D. Harvey (2001). J. Am. Chem. Soc. 123, 4340–4341.CrossRefGoogle Scholar
  6. 6.
    P. D. Harvey, K. Hierso, P. Braunstein, and X. Morise (1996). Inorg. Chim. Acta 250, 337–343.CrossRefGoogle Scholar
  7. 7.
    T. Zhang, M. Drouin, and P. D. Harvey (1996). Chem. Commun. 877–878.Google Scholar
  8. 8.
    R. J. Puddephatt, L. Manojlovic-Muir, and K. W. Muir (1990). Polyhedron 9, 2767–2802.CrossRefGoogle Scholar
  9. 9.
    C. Cugnet, D. Lucas, F. Lemaître, E. Collange, A. Soldera, Y. Mugnier, and P. D. Harvey (2006). Chem. Eur. J. 12, 8386–8395.CrossRefGoogle Scholar
  10. 10.
    C. Cugnet, D. Lucas, Y. Mugnier, S. Dal Molin, A. Soldera, and P. D. Harvey (2007). Chem. Eur. J. 13, 5338–5346.CrossRefGoogle Scholar
  11. 11.
    F. Lemaître, D. Lucas, K. Groison, P. Richard, Y. Mugnier, and P. D. Harvey (2003). J. Am. Chem. Soc. 125, 5511–5522.CrossRefGoogle Scholar
  12. 12.
    Y. Mugnier, S. Dal Molin, C. Cugnet, D. Brevet, D. Lucas, and P. D. Harvey (2007). Inorg. Chem. 46, 3083–3088.CrossRefGoogle Scholar
  13. 13.
    S. Dal Molin, C. Cugnet, D. Brevet, D. Lucas, Y. Mugnier, D. Fortin, R. T. Boeré, and P. D. Harvey (2007). Organometallics 26, 5209–5215.CrossRefGoogle Scholar
  14. 14.
    C. Cugnet, D. Brevet, S. Dal Molin, D. Lucas, Y. Mugnier, and P. D. Harvey (2007). J. Clust. Sci. 18, 671–683.CrossRefGoogle Scholar
  15. 15.
    B. R. Lloyd and R. J. Puddephatt (1984). Inorg. Chim. Acta 90, L77–L78.CrossRefGoogle Scholar
  16. 16.
    L. Manojlovic-Muir, K. W. Muir, B. R. Lloyd, and R. J. Puddephatt (1983). J. Chem. Soc., Chem. Commun. 22, 1336–1337.CrossRefGoogle Scholar
  17. 17.
    SIR92 Program, A. Altomare, G. Cascarano, C. Giacovazzo, and A. Guagliardi (1999). J. Appl. Crystallogr. 32, 115–119.CrossRefGoogle Scholar
  18. 18.
    G. M. Sheldrick SHELXL-97, program for the refinement of crystal structures (University of Göttingen, Göttingen, Germany, 1997).Google Scholar
  19. 19.
    I. Gauthron, Y. Mugnier, K. Hierso, and P. D. Harvey (1997). Can. J. Chem. 75, 1182–1187.CrossRefGoogle Scholar
  20. 20.
    K. A. Connors Binding constants: the measurements of molecular complex stability (Wiley, New York, 1987).Google Scholar
  21. 21.
    D. R. Lide (ed.) CRC handbook of chemistry and physics, 90th ed (CRC Press, Boca Raton, FL, 2010).Google Scholar
  22. 22.
    E. G. J. Janzen and J. I. P. Liu (1973). J. Magn. Reson. 9, 510–512.CrossRefGoogle Scholar
  23. 23.
    C. Cugnet, S. Dal Molin, D. Brevet, D. Lucas, Y. Mugnier, P. D. Harvey, and R. T. Boere (2009). Can. J. Chem. 87, 103–109.CrossRefGoogle Scholar
  24. 24.
    L. Manojlovic-Muir, K. W. Muir, M. Rashid, G. Schoettel, and R. J. Puddephatt (1991). Organometallics 10, 1719–1727.CrossRefGoogle Scholar
  25. 25.
    D. Brevet, D. Lucas, P. Richard, A. Vallat, Y. Mugnier, and P. D. Harvey (2006). Can. J. Chem. 84, 243–250 and references therein.Google Scholar
  26. 26.
    B. R. Lloyd, L. Manjovic-Muir, K. W. Muir, and R. J. Puddephatt (1993). Organometallics 12, 1231–1237.CrossRefGoogle Scholar
  27. 27.
    D. G. Holah, A. N. Hughes, E. Krysa, G. J. Spivak, M. D. Havighurst, and V. R. Magnuson (1997). Polyhedron 16, 2353–2359.CrossRefGoogle Scholar
  28. 28.
    A. L. Balch, B. J. Davis, and M. M. Olmstead (1990). J. Am. Chem. Soc. 112, 8592–8593.CrossRefGoogle Scholar
  29. 29.
    A. L. Balch, B. J. Davis, and M. M. Olmstead (1993). J. Inorg. Chem. 32, 3937–3942.CrossRefGoogle Scholar
  30. 30.
    M. Rashidi, E. Kristof, J. J. Vittal, and R. J. Puddephatt (1994). Inorg. Chem. 33, 1497–1501.CrossRefGoogle Scholar
  31. 31.
    N. M. Boag, D. Boucher, J. A. Davies, R. W. Miller, A. Pinkerton, and R. Syed (1988). Organometallics 7, 791–792.CrossRefGoogle Scholar
  32. 32.
    R. L. Cowan, D. B. Pourreau, A. L. Rheingold, S. J. Geib, and W. C. Trogler (1987). Inorg. Chem. 26, 259–265.CrossRefGoogle Scholar
  33. 33.
    Y. Xie, C.-L. Lee, Y. Yang, S. J. Rettig, and B. R. James (1992). Can. J. Chem. 70, 751–762.CrossRefGoogle Scholar
  34. 34.
    T. Murahasi, T. Okuno, T. Nagai, and H. Kurosawa (2002). Organometallics 21, 3679–3682.CrossRefGoogle Scholar
  35. 35.
    C.-L. Lee, C. T. Hunt, and A. L. Balch (1981). Inorg. Chem. 20, 2498–2504.CrossRefGoogle Scholar
  36. 36.
    J. A. Davis, K. Kirschbaum, and C. Kluwe (1994). Organometallics 13, 3664–3670.CrossRefGoogle Scholar
  37. 37.
    J. H. K. Yip, J. Wu, K.-Y. Wong, K. P. Ho, L. L. Koh, and J. J. Vittal (2004). Eur. J. Inorg. Chem. 1056–1062.Google Scholar
  38. 38.
    C. Kluwe and J. A. Davies (1995). Organometallics 14, 4257–4262.CrossRefGoogle Scholar
  39. 39.
    M. Knorr, G. Schmitt, M. M. Kubicki, and E. Vigier (2003). Eur. J. Inorg. Chem. 514–517.Google Scholar
  40. 40.
    M. Rashidi, G. Schoettel, J. J. Vittal, and R. J. Puddephatt (1992). Organometallics 11, 2224–2228.CrossRefGoogle Scholar
  41. 41.
    P. D. Harvey, R. Provencher, J. Gagnon, T. Zhang, D. Fortin, K. Hierso, M. Drouin, and S. M. Socol (1996). Can. J. Chem. 74, 2268–2278.CrossRefGoogle Scholar
  42. 42.
    G. Wulfsberg, Chimie Inorganique: The Covalent and Anionic Radii are: F 0.71 and 1.19 Å, Cl 0.99 and 1.67 Å, respectively (Dunod, Paris, 2002).Google Scholar
  43. 43.
    N. A. Jasim, R. N. Perutz, A. C. Whitwood, T. Braun, J. Izundu, B. Neumann, S. Rothfeld, and H.-G. Stammler (2004). Organometallics 23, 6140–6149.CrossRefGoogle Scholar
  44. 44.
    A. Yahav, I. Goldberg, and A. Vigalok (2003). J. Am. Chem. Soc. 125, 13634–13635.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sophie Fournier
    • 1
  • Cyril Cugnet
    • 1
  • Alain Vallat
    • 1
  • Charles H. Devillers
    • 1
  • Yoann Rousselin
    • 1
  • Marek M. Kubicki
    • 1
  • Dominique Lucas
    • 1
  • Yves Mugnier
    • 1
  • Pierre D. Harvey
    • 2
  1. 1.Faculté des Sciences Mirande, Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB) UMR CNRS 5260Université de BourgogneDijon CedexFrance
  2. 2.Département de ChimieUniversité de SherbrookeQuébecCanada

Personalised recommendations