Skip to main content
Log in

Reactivity of Pd3(dppm)3(CO)n+ and Pd3(dppm)3(CO)(RCCR)n+ (n = 0, +1, +2) Towards F. Evidence of Reactive Intermediates and X-Ray Structure of [Pd3(dppm)3(MeO2CC≡CCO2Me)(F)]PF6

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The reactivity of the trinuclear palladium cluster [Pd3(dppm)3(CO)]n+ (dppm = bis(diphenylphosphinomethane); n = 2, 1) towards F was investigated by electrochemical and spectroscopic methods. The reaction depends on the charge of the cluster. The chemical reduction of the cluster dication is observed in the presence of F generating the paramagnetic monocationic cluster. Spin-trapping experiments with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) provided evidence for the radical F as an intermediate. In a similar manner to the dication, the monocationic cluster [Pd3(dppm)3(CO)]+ is also reduced, but in a slower process, by the F ion to produce [Pd3(dppm)3(CO)]0. Additionally, the alkyne cluster adducts [Pd3(dppm)3(CO)(RCCR)]n+ (n = 2, 1; R = CO2Me) are also reactive towards F. Particularly, the dication adduct leads to a metastable fluoride adduct [Pd3(dppm)3(CO)(RCCR)(F)]+. The electroreductive behavior of this adduct involves electron-transfer steps and F exchange equilibriums, for which digital simulation enables the extraction of the thermodynamic parameters (standard potentials and equilibrium constants). Concurrently, the monocation adduct [Pd3(dppm)3(CO)(RCCR)]+ with F, leads to a disproponation generating 0.5 equiv. of [Pd3(dppm)3(CO)(RCCR)(F)]+ and 0.5 equiv. of [Pd3(dppm)3(CO)(RCCR)]0. The former slowly evolves to [Pd3(dppm)3(RCCR)(F)]+, which was described by X-ray diffraction method.

Graphical Abstract

[Pd3(ddpm)3(CO)]n+ (n = 2, 1) are reduced by F to form [Pd3(dppm)3(CO)](n+)−1. Concurrently, [Pd3(dppm)3(CO)(RCCR)]n+ (n = 2, 1) with F generate the corresponding adducts [Pd3(dppm)3(CO)(RCCR)(F)](n+)−1, but, in the case of n = 1, disproponation is observed into [Pd3(dppm)3(CO)(RCCR)(F)]+ and [Pd3(dppm)3(CO)(RCCR)]0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Scheme 4
Fig. 8
Scheme 5
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. D. Harvey, Y. Mugnier, D. Lucas, D. Evrard, F. Lemaître, and A. Vallat (2004). J. Clust. Sci. 15, 63–90.

    Article  CAS  Google Scholar 

  2. D. Lucas, F. Lemaître, B. Gallego-Gomez, C. Cugnet, P. Richard, Y. Mugnier, and P. D. Harvey (2005). Eur. J. Inorg. Chem. 1011–1018.

  3. D. Brevet, Y. Mugnier, F. Lemaître, D. Lucas, S. Samreth, and P. D. Harvey (2003). Inorg. Chem. 42, 4910–4917.

    Article  Google Scholar 

  4. F. Lemaitre, D. Lucas, D. Brevet, A. Vallat, P. D. Harvey, and Y. Mugnier (2002). Inorg. Chem. 41, 2368–2373.

    Article  CAS  Google Scholar 

  5. D. Brevet, D. Lucas, H. Cattey, F. Lemaitre, Y. Mugnier, and P. D. Harvey (2001). J. Am. Chem. Soc. 123, 4340–4341.

    Article  CAS  Google Scholar 

  6. P. D. Harvey, K. Hierso, P. Braunstein, and X. Morise (1996). Inorg. Chim. Acta 250, 337–343.

    Article  CAS  Google Scholar 

  7. T. Zhang, M. Drouin, and P. D. Harvey (1996). Chem. Commun. 877–878.

  8. R. J. Puddephatt, L. Manojlovic-Muir, and K. W. Muir (1990). Polyhedron 9, 2767–2802.

    Article  CAS  Google Scholar 

  9. C. Cugnet, D. Lucas, F. Lemaître, E. Collange, A. Soldera, Y. Mugnier, and P. D. Harvey (2006). Chem. Eur. J. 12, 8386–8395.

    Article  CAS  Google Scholar 

  10. C. Cugnet, D. Lucas, Y. Mugnier, S. Dal Molin, A. Soldera, and P. D. Harvey (2007). Chem. Eur. J. 13, 5338–5346.

    Article  CAS  Google Scholar 

  11. F. Lemaître, D. Lucas, K. Groison, P. Richard, Y. Mugnier, and P. D. Harvey (2003). J. Am. Chem. Soc. 125, 5511–5522.

    Article  Google Scholar 

  12. Y. Mugnier, S. Dal Molin, C. Cugnet, D. Brevet, D. Lucas, and P. D. Harvey (2007). Inorg. Chem. 46, 3083–3088.

    Article  Google Scholar 

  13. S. Dal Molin, C. Cugnet, D. Brevet, D. Lucas, Y. Mugnier, D. Fortin, R. T. Boeré, and P. D. Harvey (2007). Organometallics 26, 5209–5215.

    Article  CAS  Google Scholar 

  14. C. Cugnet, D. Brevet, S. Dal Molin, D. Lucas, Y. Mugnier, and P. D. Harvey (2007). J. Clust. Sci. 18, 671–683.

    Article  CAS  Google Scholar 

  15. B. R. Lloyd and R. J. Puddephatt (1984). Inorg. Chim. Acta 90, L77–L78.

    Article  CAS  Google Scholar 

  16. L. Manojlovic-Muir, K. W. Muir, B. R. Lloyd, and R. J. Puddephatt (1983). J. Chem. Soc., Chem. Commun. 22, 1336–1337.

    Article  Google Scholar 

  17. SIR92 Program, A. Altomare, G. Cascarano, C. Giacovazzo, and A. Guagliardi (1999). J. Appl. Crystallogr. 32, 115–119.

    Article  CAS  Google Scholar 

  18. G. M. Sheldrick SHELXL-97, program for the refinement of crystal structures (University of Göttingen, Göttingen, Germany, 1997).

    Google Scholar 

  19. I. Gauthron, Y. Mugnier, K. Hierso, and P. D. Harvey (1997). Can. J. Chem. 75, 1182–1187.

    Article  CAS  Google Scholar 

  20. K. A. Connors Binding constants: the measurements of molecular complex stability (Wiley, New York, 1987).

    Google Scholar 

  21. D. R. Lide (ed.) CRC handbook of chemistry and physics, 90th ed (CRC Press, Boca Raton, FL, 2010).

    Google Scholar 

  22. E. G. J. Janzen and J. I. P. Liu (1973). J. Magn. Reson. 9, 510–512.

    Article  CAS  Google Scholar 

  23. C. Cugnet, S. Dal Molin, D. Brevet, D. Lucas, Y. Mugnier, P. D. Harvey, and R. T. Boere (2009). Can. J. Chem. 87, 103–109.

    Article  CAS  Google Scholar 

  24. L. Manojlovic-Muir, K. W. Muir, M. Rashid, G. Schoettel, and R. J. Puddephatt (1991). Organometallics 10, 1719–1727.

    Article  CAS  Google Scholar 

  25. D. Brevet, D. Lucas, P. Richard, A. Vallat, Y. Mugnier, and P. D. Harvey (2006). Can. J. Chem. 84, 243–250 and references therein.

  26. B. R. Lloyd, L. Manjovic-Muir, K. W. Muir, and R. J. Puddephatt (1993). Organometallics 12, 1231–1237.

    Article  CAS  Google Scholar 

  27. D. G. Holah, A. N. Hughes, E. Krysa, G. J. Spivak, M. D. Havighurst, and V. R. Magnuson (1997). Polyhedron 16, 2353–2359.

    Article  CAS  Google Scholar 

  28. A. L. Balch, B. J. Davis, and M. M. Olmstead (1990). J. Am. Chem. Soc. 112, 8592–8593.

    Article  CAS  Google Scholar 

  29. A. L. Balch, B. J. Davis, and M. M. Olmstead (1993). J. Inorg. Chem. 32, 3937–3942.

    Article  CAS  Google Scholar 

  30. M. Rashidi, E. Kristof, J. J. Vittal, and R. J. Puddephatt (1994). Inorg. Chem. 33, 1497–1501.

    Article  CAS  Google Scholar 

  31. N. M. Boag, D. Boucher, J. A. Davies, R. W. Miller, A. Pinkerton, and R. Syed (1988). Organometallics 7, 791–792.

    Article  CAS  Google Scholar 

  32. R. L. Cowan, D. B. Pourreau, A. L. Rheingold, S. J. Geib, and W. C. Trogler (1987). Inorg. Chem. 26, 259–265.

    Article  CAS  Google Scholar 

  33. Y. Xie, C.-L. Lee, Y. Yang, S. J. Rettig, and B. R. James (1992). Can. J. Chem. 70, 751–762.

    Article  CAS  Google Scholar 

  34. T. Murahasi, T. Okuno, T. Nagai, and H. Kurosawa (2002). Organometallics 21, 3679–3682.

    Article  Google Scholar 

  35. C.-L. Lee, C. T. Hunt, and A. L. Balch (1981). Inorg. Chem. 20, 2498–2504.

    Article  CAS  Google Scholar 

  36. J. A. Davis, K. Kirschbaum, and C. Kluwe (1994). Organometallics 13, 3664–3670.

    Article  Google Scholar 

  37. J. H. K. Yip, J. Wu, K.-Y. Wong, K. P. Ho, L. L. Koh, and J. J. Vittal (2004). Eur. J. Inorg. Chem. 1056–1062.

  38. C. Kluwe and J. A. Davies (1995). Organometallics 14, 4257–4262.

    Article  CAS  Google Scholar 

  39. M. Knorr, G. Schmitt, M. M. Kubicki, and E. Vigier (2003). Eur. J. Inorg. Chem. 514–517.

  40. M. Rashidi, G. Schoettel, J. J. Vittal, and R. J. Puddephatt (1992). Organometallics 11, 2224–2228.

    Article  CAS  Google Scholar 

  41. P. D. Harvey, R. Provencher, J. Gagnon, T. Zhang, D. Fortin, K. Hierso, M. Drouin, and S. M. Socol (1996). Can. J. Chem. 74, 2268–2278.

    Article  CAS  Google Scholar 

  42. G. Wulfsberg, Chimie Inorganique: The Covalent and Anionic Radii are: F 0.71 and 1.19 Å, Cl 0.99 and 1.67 Å, respectively (Dunod, Paris, 2002).

  43. N. A. Jasim, R. N. Perutz, A. C. Whitwood, T. Braun, J. Izundu, B. Neumann, S. Rothfeld, and H.-G. Stammler (2004). Organometallics 23, 6140–6149.

    Article  CAS  Google Scholar 

  44. A. Yahav, I. Goldberg, and A. Vigalok (2003). J. Am. Chem. Soc. 125, 13634–13635.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Natural Sciences and Engineering Research Council (Canada), Centre National de Recherche Scientifique (CNRS, UMR 5260) and Université de Bourgogne (France) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dominique Lucas or Pierre D. Harvey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, S., Cugnet, C., Vallat, A. et al. Reactivity of Pd3(dppm)3(CO)n+ and Pd3(dppm)3(CO)(RCCR)n+ (n = 0, +1, +2) Towards F. Evidence of Reactive Intermediates and X-Ray Structure of [Pd3(dppm)3(MeO2CC≡CCO2Me)(F)]PF6 . J Clust Sci 21, 837–856 (2010). https://doi.org/10.1007/s10876-010-0338-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-010-0338-2

Keywords

Navigation