Skip to main content
Log in

Formation of Crystalline Sodium Hydride Nanoparticles Encapsulated Within an Amorphous Framework

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A major research theme to emerge in the science and technology of materials is the incorporation of nanostructure into the functionality of properties. Such nanostructured materials can offer distinct advantages over bulk materials, partly because the physical properties of the material itself can vary in a tunable, size-dependent fashion. Of course, in addition, nanoparticles offer a greatly increased surface area for chemical reaction. Typical methods for nanoparticle synthesis include: reaction in the liquid phase using the sol–gel approach and mechanical ball-milling of the bulk material; both of these approaches are somewhat problematic for the preparation of reactive nanostructured materials which are sensitive to air and/or moisture. We report here the formation of crystalline nanoparticles of sodium hydride encapsulated in a host amorphous silica gel matrix. These nanoparticles are formed by in situ hydrogenation of a precursor material—Na loaded silica gel—under mild conditions. The resulting material is considerably less pyrophoric and less air-sensitive than the bulk hydride. We anticipate that this formation method of in situ modification of reactive precursor material may have wide applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Grochala and P. P. Edwards (2004). Chem. Rev. 104, (3), 1283–1315.

    Article  CAS  Google Scholar 

  2. A. Zuttel (2004). Naturwissenschaften 91, (4), 157–172.

    Article  Google Scholar 

  3. W. M. Mueller, J. P. Blackledge, and G. G. Libowitz Metal Hydrides (Academic Press, New York, 1968).

    Google Scholar 

  4. B. Schmidt and M. Pohler (2003). Org. Biomol. Chem. 1, (14), 2512–2517.

    Article  CAS  Google Scholar 

  5. Y. H. Fan, et al. (2006). J. Nanopart. Res. 8, (6), 935–942.

    Article  CAS  Google Scholar 

  6. Z. Wang, W. Zhou, and G. Lin (1985). Tetrahedron Lett. 26, (50), 6221–6224.

    Article  CAS  Google Scholar 

  7. L. Paquette (ed.) Encyclopedia of Reagents for Organic Synthesis (Wiley, New York, 2004).

    Google Scholar 

  8. P. Caubere (1983). Angew. Chem. Int. Ed. Engl. 22, (8), 599–613.

    Article  Google Scholar 

  9. M. A. Hayward and M. J. Rosseinsky (2003). Solid State Sci. 5, (6), 839–850.

    Article  CAS  Google Scholar 

  10. P. A. A. Klusener, et al. (1986). Angew. Chem. Int. Ed. Engl. 25, (5), 465–466.

    Article  Google Scholar 

  11. R. Pi, et al. (1987). J. Org. Chem. 52, (19), 4299–4303.

    Article  CAS  Google Scholar 

  12. J. L. Dye, et al. (2005). J. Am. Chem. Soc. 127, (26), 9338–9339.

    Article  CAS  Google Scholar 

  13. M. Shatnawi, et al. (2007). J. Am. Chem. Soc. 129, (5), 1386–1392.

    Article  CAS  Google Scholar 

  14. P. C. H. Mitchell, et al., in J. L. Finney and D. L. Worcester (eds.), Vibrational Spectroscopy with Neutrons with Applications in Chemistry, Biology, Materials Science and Catalysis. Series on neutron techniques and applications (World Scientific, Singapore, 2005), p. 642.

  15. G. Auffermann, et al. (2004). J. Phys. Condens. Matter 16, (32), 5731–5743.

    Article  CAS  Google Scholar 

  16. J. A. Weil, J. R. Bolton, and J. E. Wertz Electron Paramagnetic Resonance: Elementary Theory, Practical Applications (Wiley, New York, 1994).

    Google Scholar 

  17. R. N. Edmonds, et al. (1984). J. Phys. Chem. 88, (17), 3764–3771.

    Article  CAS  Google Scholar 

  18. L. Li, et al. (2009). Angew. Chem. Int. Ed. 48, (36), 6678–6682.

    Article  CAS  Google Scholar 

  19. H. M. Rietveld (1969). J. Appl. Crystallogr. 2, 65–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr Jeff Harmer of the Centre for Advanced Electron Resonance Spectroscopy (CÆSR) at the University of Oxford for his help and assistance with the ESR measurements, and STFC and ISIS for beam time on TOSCA instrument. We would like to thank SigNa Chem for providing the starting samples (Na-SG) and Professor J.L. Dye for many helpful discussions. AS thanks the Glasstone Research Fellowship; MS, MJTL and PPE thank the EPSRC and SAW thanks the Leverhulme Trust for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Edwards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sartbaeva, A., Wells, S.A., Sommariva, M. et al. Formation of Crystalline Sodium Hydride Nanoparticles Encapsulated Within an Amorphous Framework. J Clust Sci 21, 543–549 (2010). https://doi.org/10.1007/s10876-010-0336-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-010-0336-4

Keywords

Navigation