Skip to main content

Synthesis of Mo(V) Dimers of the Form [Mo2O2(acac)2(μ-O)(μ-OC2H5)(μ-O2CR)], the Tetramer [Mo2O2(acac)2(μ-O)(μ-OC2H5)(μ-O2C)C6H4(p-μ-O2C)Mo2O2(acac)2(μ-O)(μ-OC2H5)], and, the Crystal and Molecular Structures of [Mo2O2(acac)2(μ-O)(μ-OC2H5)(μ-OOCC6H5)] and [Mo2O2(acac)2(μ-O)(μ-OC2H5)(μ-OOCC6H4(o-OH))]

Abstract

Reaction of bis(acetylacetonato)dioxomolybdenum(VI) (MoO2(acac)2) with benzoic acid, in ethanol, yielded an oxo, ethoxide and benzoate-bridged dinuclear Mo(V) species Mo2O2(acac)2(μ-O)(μ-OC2H5)(μ-OOCC6H5) (1), with two terminal “MoO” units and one acac ligand retained on each Mo atom. This complex was analysed by IR and 1H NMR spectroscopy, X-ray crystallography and elemental analyses. The same reaction with substituted benzoic acids (o-OH)C6H4COOH, (p-Cl)C6H4COOH, (2,4-(OH)2)C6H3COOH and (o-I)C6H4COOH produced a series of dinuclear complexes, all of which were characterized by IR and 1H NMR spectroscopy and elemental analyses. Terephthalic acid ((p-COOH)C6H4(COOH)) on reaction with MoO2(acac)2 resulted in a tetramer [Mo2O2(acac)2(μ-O)(μ-OC2H5)(μ-O2C)C6H4(p-μ-O2C)Mo2O2(acac)2(μ-O)(μ-OC2H5)] (6) which was evident from the 1H NMR spectrum and elemental analyses. The role of ethanol as a reducing agent has proved instrumental in the synthesis of these dimeric Mo(V) complexes. The synthetic details and characterization by spectroscopic and X-ray crystallographic techniques are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. P. D. Williams and M. D. Curtis (1986). Inorg. Chem. 25, 4562–4570.

    Article  CAS  Google Scholar 

  2. W. Yang, C. Lu, X. Lin, and H. Zhuang (2002). Inorg. Chem. 41, 452–454.

    Article  CAS  Google Scholar 

  3. W. Yang, C. Lu, X. Lin, and H. Zhuang (2000). Chem. Commun., 1623–1624.

  4. C. du Peloux, A. Dolbecq, P. Mialane, J. Marrot, and F. Sécheresse (2004). J. Chem. Soc., Dalton Trans., 1259–1263.

  5. G. S. Kim, D. A. Keszler, and C. W. DeKock (1991). Inorg. Chem. 30, 574–577.

    Article  CAS  Google Scholar 

  6. G. Suss-Fink, L. Plasseraud, V. Ferrand, and H. Stoeckli-Evans (1997). Chem. Commun., 1657–1658.

  7. B. Modec, J. V. Brenčič, E. M. Burkholder, and J. Zubieta (2003). J. Chem. Soc., Dalton Trans., 4618-4625.

  8. N. Barrier, B. Fontaine, S. Pierrefixe, R. Gaurtier, and P. Gougeon (2009). Inorg. Chem. 48, 3848–3856.

    Article  CAS  Google Scholar 

  9. F. A. Cotton and S. M. Morehouse (1965). Inorg. Chem. 4, 1377–1381.

    Article  Google Scholar 

  10. T. Shibahara and H. Kuroya (1981). Inorg. Chim. Acta 54, L75–L76.

    Article  CAS  Google Scholar 

  11. W. S. McDonald (1978). Acta Crystallogr. B34, 2850–2853.

    CAS  Google Scholar 

  12. B. Kamenar, M. Penavic, and B. Markovic (1984). Croat. Chem. Acta 57, 637–643.

    CAS  Google Scholar 

  13. B. Kamenar, M. Penavic, B., and Korpar-Colig (1981). J. Chem. Soc., Dalton Trans., 311–313.

  14. B. Kamenar, M. Penavic, B. Korpar-Colig, and B. Markovic (1981). Cryst. Struc. Commun. 10, 961–966.

    CAS  Google Scholar 

  15. B. Kamenar, M. Penavic, and B. Markovic (1987). Acta Crystallogr. Sect. C: Cryst. Struc. Commun. C43, 2275–2277.

    Article  CAS  Google Scholar 

  16. B. Kamenar, B. Kaitner, and N. Strukan (1991). Croat. Chem. Acta 64, 329–341.

    CAS  Google Scholar 

  17. B. Modec, J. V. Brenčič, and J. Koller (2004). Eur. J. Inorg. Chem., 1611–1620.

  18. B. Modec, D. Dolenc, J. V. Brenčič, J. Koller, and J. Zubieta (2005). Eur. J. Inorg. Chem. 16, 3224–3237.

    Article  Google Scholar 

  19. B. Modec and J. V. Brenčič (2005). Eur. J. Inorg. Chem., 4325–4334.

  20. B. Modec, D. Dolenc, and J. V. Brenčič (2007). Inorg. Chim. Acta 360, 663–678.

    Article  CAS  Google Scholar 

  21. B. Modec (2009). Inorg. Chem. Commun. 12, 328–331.

    Article  CAS  Google Scholar 

  22. B. Modec, J. V. Brenčič, R. C. Finn, R. S. Rarig, and J. Zubieta (2001). Inorg. Chim. Acta 322, 113–119.

    Article  CAS  Google Scholar 

  23. C. Litos, A. Terzis, C. Raptopoulou, A. Rontoyianni, and A. Karaliota (2006). Polyhedron 25, 1337–1347.

    Article  CAS  Google Scholar 

  24. M. Cindrić, N. Strukan, T. Kajfež, G. Giester, and B. Kamenar (2000). Inorg. Chem. Commun. 3, 281–284.

    Article  Google Scholar 

  25. F. R. Fronczek, R. L. Luck, and G. Wang (2003). Inorg. Chim. Acta 342, 247–254.

    Article  CAS  Google Scholar 

  26. G. Wang, G. Chen, R. L. Luck, Z. Wang, Z. Mu, D. G. Evans, and X. Duan (2004). Inorg. Chim. Acta 357, 3223–3229.

    Article  CAS  Google Scholar 

  27. A. Jimtaisong and R. L. Luck (2005). J. Cluster Sci. 16, 167–183.

    Article  CAS  Google Scholar 

  28. A. Jimtaisong and R. L. Luck (2006). Inorg. Chem. 45, 10391–10402.

    Article  CAS  Google Scholar 

  29. G. Wang, A. Jimtaisong, and R. L. Luck (2005). Inorg. Chim. Acta 358, 933–940.

    Article  CAS  Google Scholar 

  30. A. Jimtaisong, L. Feng, S. Sreehari, C. A. Bayse, and R. L. Luck (2008). J. Cluster Sci. 19, 181–195.

    Article  CAS  Google Scholar 

  31. C. G. Barraclough, J. Lewis, and R. S. Nyholm (1959). J. Chem. Soc., 3552–3555.

  32. R. J. Butcher, B. R. Penfold, and E. Sinn (1979). J. Chem. Soc., Dalton Trans., 668–675.

  33. S. M. Horner and S. Y. Tyree (1962). Inorg. Chem. 1, 122–127.

    Article  CAS  Google Scholar 

  34. R. J. Butcher, H. P. Gunz, R. G. A. R. Maclagan, H. K. J. Powell, C. J. Wilkins, and Y. S. Hian (1975). J. Chem. Soc., Dalton Trans., 1223–1227.

  35. H. L. Krauss and W. Huber (1961). Chem. Ber. 94, 2864–2876.

    Article  CAS  Google Scholar 

  36. Aldrich/ACD Library of FT 1H NMR spectra, Version 1.00/21 Jan 1998, © 1994-1998 Advanced Chemistry Development, Inc. and Aldrich Chemical Company, Inc.

  37. L. J. Farrugia (1997). Appl. Crystallogr. 30, 565.

    Article  CAS  Google Scholar 

  38. J.-D. Zhong, Q.-Z. Zhu, S.-J. Li, and F.-M. Tao (2009). Chem. Phys. Lett. 475, 15–18.

    Article  Google Scholar 

  39. C. Limberg, S. Parsons, A. J. Downs, and D. J. Watkin (1994). J. Chem. Soc., Dalton Trans., 1169–1174.

  40. M. Hunger, C. Limberg, and L. Zsolnai (1998). Polyhedron 17, 3935–3945.

    Article  CAS  Google Scholar 

  41. R. L. Luck and G. D. Mendenhall (2000). Acta Crystallogr. Sect. C 56, 602–603.

    Article  Google Scholar 

  42. L. J. Farrugia (1999). J. Appl. Crystallogr. 32, 837–838.

    Article  CAS  Google Scholar 

  43. A. C. T. North, D. C. Phillips, and F. S. Matthews (1968). Acta Crystallogr. Sect. A 24, 351–359.

    Article  Google Scholar 

  44. A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, and R. Spagna (1999). J. Appl. Crystallogr. 32, 115–119.

    Article  CAS  Google Scholar 

  45. G. M. Sheldrick SHELX97. Programs for Crystal Structure Analysis (Release 97–2) (University of Gottingen, Gottingen, Germany, 1997).

    Google Scholar 

Download references

Acknowledgments

We thank Michigan Technological University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudy L. Luck.

Additional information

Dedicated to Professor M. H. Chisholm on the occasion of his 65th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 351 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sreehari, S., Luck, R.L. Synthesis of Mo(V) Dimers of the Form [Mo2O2(acac)2(μ-O)(μ-OC2H5)(μ-O2CR)], the Tetramer [Mo2O2(acac)2(μ-O)(μ-OC2H5)(μ-O2C)C6H4(p-μ-O2C)Mo2O2(acac)2(μ-O)(μ-OC2H5)], and, the Crystal and Molecular Structures of [Mo2O2(acac)2(μ-O)(μ-OC2H5)(μ-OOCC6H5)] and [Mo2O2(acac)2(μ-O)(μ-OC2H5)(μ-OOCC6H4(o-OH))]. J Clust Sci 21, 525–541 (2010). https://doi.org/10.1007/s10876-010-0320-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-010-0320-z

Keywords

  • Ethoxide
  • Dimeric
  • Mo(V)
  • X-ray
  • Benzoic acid