Skip to main content
Log in

Synthesis and Characterization of Rare Earth Orthovanadate (RVO4; R = La, Ce, Nd, Sm, Eu & Gd) Nanorods/Nanocrystals/Nanospindles by a Facile Sonochemical Method and Their Catalytic Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We report herein on an efficient sonochemical method for the synthesis of rare earth orthovanadate nanorods/nanoparticles/nanospindles, (general formula RVO4; R = La, Ce, Nd, Sm, Eu and Gd). TGA, XRD, FTIR, Raman, UV–Vis, and TEM studies are employed for their characterization and for understanding their morphologies. In order to vary the textural properties of the rare earth vanadates, two surfactants, polyethylene glycol (PEG) and amphiphilic triblock copolymer Pluronic P123, are chosen in the preparation. While the sonochemical synthesis in the presence of PEG results in the formation of nearly spherical nanoparticles of LaVO4, CeVO4, SmVO4 and EuVO4, the same technique yields nanorods and nanospindles of NdVO4 and GdVO4, respectively. When P123 is used as the surfactant, the morphologies of RVO4 are strikingly different, and in most cases nanorods and nanospindles are formed. The photocatalytic activities of the rare earth orthovanadate have been evaluated by studying the degradation of methylene blue, and CeVO4 seems to be the best catalyst in the heterogeneous photolysis. The electrocatalytic activity of the vanadates has been examined by studying the hydrogen evolution reaction using a linear sweep voltammogram technique in 1 M of a H2SO4 solution. GdVO4 seems to be the best electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. M. Lee, S. N. Cho, and J. Cheon (2003). Adv. Mater. 15, 441.

    Article  CAS  Google Scholar 

  2. M. J. Siegfried and K. S. Choi (2005). Angew. Chem. Int. Ed. 44, 3218.

    Article  CAS  Google Scholar 

  3. Z. T. Zhang, A. J. Rondinone, J. X. Ma, J. Shen, and S. Dai (2005). Adv. Mater. 17, 1415.

    Article  CAS  Google Scholar 

  4. C. R. Patra, G. Alexandra, S. Patra, D. S. Jacob, A. Gedanken, A. Landau, and Y. Gofer (2005). New J. Chem. 29, 733.

    Article  CAS  Google Scholar 

  5. K. Jensen, J. Weldon, H. Garcia, and A. Zettl (2007). Nano Lett. 7, 3508.

    Article  CAS  Google Scholar 

  6. C. T. Au and W. D. Zhang (1997). J. Chem. Soc. Faraday Trans. 93, 1195.

    Article  CAS  Google Scholar 

  7. F. Chen, X. Wang, S. Li, G. Fu, K. Wang, Q. Lu, D. Shen, R. Nie, and H. Ma (2003). J. Appl. Phys. 94, 4708.

    Article  CAS  Google Scholar 

  8. E. V. Tsipis, M. V. Patrakeev, V. V. Kharton, N. P. Vyshatko, and J. R. Frade (2002). J. Mater. Chem. 12, 3738.

    Article  CAS  Google Scholar 

  9. G. Picardi, F. Varsano, F. Decker, U. O. Krasovec, A. Surca, and B. Orel (1999). Electrochim. Acta. 44, 3157.

    Article  CAS  Google Scholar 

  10. R. A. Fields, M. Birnbaum, and C. L. Fincher (1987). Appl. Phys. Lett. 51, 1885.

    Article  CAS  Google Scholar 

  11. J. F. Liu, Q. H. Yao, and Y. D. Li (2006). Appl. Phys. Lett. 88, 173119.

    Article  Google Scholar 

  12. M. Yu, J. Lin, and S. B. Wang (2005). Appl. Phys. A: Mater. Sci. Proc. 80, 353.

    Article  CAS  Google Scholar 

  13. K. Gaur and H. B. Lal (1983). J. Mater. Sci. Lett. 2, 744.

    Article  CAS  Google Scholar 

  14. W. Fan, X. Song, Y. Bu, S. Sun, and X. Zhao (2006). J. Phys. Chem. B 110, 23247.

    Article  CAS  Google Scholar 

  15. C. T. Au, W. D. Zhang, and H. L. Wan (1996). Catal. Lett. 37, 241.

    Article  CAS  Google Scholar 

  16. W. Fan, W. Zhao, L. You, X. Song, W. Zhan, H. Yu, and S. Sun (2004). J. Solid State Chem. 177, 4399.

    Article  CAS  Google Scholar 

  17. D. F. Mullica, E. L. Sappenfield, M. M. Abraham, B. C. Chakoumakos, and L. A. Boatner (1996). Inorg. Chim. Acta. 248, 85.

    Article  CAS  Google Scholar 

  18. S. Mahapatra and A. Ramanan (2005). J. Alloy. Compd. 395, 149.

    Article  CAS  Google Scholar 

  19. S. Mahapatra, G. Madras, and G. Row (2007). Ind. Eng. Chem. Res. 46, 1013.

    Article  CAS  Google Scholar 

  20. J. Liu and Y. Li (2007). J. Mater. Chem. 17, 1797.

    Article  CAS  Google Scholar 

  21. N. Wang, Q. Zhang, and W. Chen (2007). Cryst. Res. Technol. 42, 138.

    Article  CAS  Google Scholar 

  22. F. Luo, C. J. Jia, W. Song, L. P. You, and C. H. Yan (2005). Cryst. Growth Des. 5, 137.

    Article  CAS  Google Scholar 

  23. X. Wu, Y. Tao, L. Dong, J. Zhu, and Z. Hu (2005). J. Phys. Chem. B. 109, 11544.

    Article  CAS  Google Scholar 

  24. S. Komarneni (2003). Curr. Sci. 85, 1730.

    CAS  Google Scholar 

  25. L. H. Qiu, V. G. Pol, M. J. Calderon, and A. Gedanken (2005). Ultrasonic Sonochem. 12, 243.

    Article  CAS  Google Scholar 

  26. L. Zhu, X. Liu, Q. Li, J. Li, S. Zhang, J. Meng, and X. Cao (2006). Nanotechnology 17, 4217.

    Article  CAS  Google Scholar 

  27. J. Geng, J. J. Zhu, D. J. Lu, and H. Y. Chen (2006). Inorg. Chem. 45, 8403.

    Article  CAS  Google Scholar 

  28. J. Geng, Y. Lv, D. Lu, and J. J. Zhu (2006). Nanotechnology 17, 2614.

    Article  CAS  Google Scholar 

  29. V. G. Pol, R. Reisfeld, and A. Gedanken (2002). Chem. Mater. 14, 3920.

    Article  CAS  Google Scholar 

  30. L. Zhu, Q. Li, J. Li, X. Liu, J. Meng, and X. Cao (2007). J. Nanoparticle Res. 9, 261.

    Article  CAS  Google Scholar 

  31. R. Ganesan and A. Gedanken (2008). Nanotechnology 19, 025702.

    Article  Google Scholar 

  32. C. C. Santos, E. N. Silva, A. P. Ayala, I. Guedes, P. S. Pizani, C. K. Loong, and L. A. Boatner (2007). J. Appl. Phys. 101, 053511.

    Article  Google Scholar 

  33. I. Guedes, Y. Hirano, M. Grimsditch, N. Wkabayashi, C. K. Loong, and L. A. Boatner (2001). J. Appl. Phys. 90, 1843.

    Article  CAS  Google Scholar 

  34. N. Deligne, V. Gonze, D. Bayot, and M. Devillers (2008). Eur. J. Inorg. Chem. 6, 896.

    Article  Google Scholar 

  35. C. Julien, G. A. Nazri, and O. Bergstrom (1997). Phys. Stat. Sol. 201, 319.

    Article  CAS  Google Scholar 

  36. M. Gotić, S. Musić, M. Ivanda, M. Šoufek, and S. Popović (2005). J. Mol. Struct. 744–747, 535.

    Google Scholar 

  37. P. Alexandridis and T. A. Hatton (1995). Colloid Surf. Sci. A 96, 1.

    Article  CAS  Google Scholar 

  38. J. Geng, D. Lu, J. J. Zhu, and H. Y. Chen (2006). J. Phys. Chem. B 110, 13777.

    Article  CAS  Google Scholar 

  39. C. J. Mao, H. C. Pan, X. C. Wu, J. J. Zhu, and H. Y. Chen (2006). J. Phys. Chem. B 110, 14709.

    Article  CAS  Google Scholar 

  40. L. Zhu, X. Liu, J. Meng, and X. Cao (2007). Cryst. Growth Des. 7, 2505.

    Article  CAS  Google Scholar 

  41. L. Vincze and T. J. Kemp (1995). J. Photochem. Photobiol. A 87, 257.

    Article  CAS  Google Scholar 

  42. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann (1995). Chem. Rev. 95, 69.

    Article  CAS  Google Scholar 

  43. T. L. Thompson and J. T. Yates Jr. (2006). Chem. Rev. 106, 4428.

    Article  CAS  Google Scholar 

  44. Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Kotoh, and M. Tachiya (2006). J. Am. Chem. Soc. 128, 416.

    Article  CAS  Google Scholar 

  45. R. Osgood (2006). Chem. Rev. 106, 4379.

    Article  CAS  Google Scholar 

  46. J. Zhao, B. Li, K. Onda, M. Feng, and H. Petek (2006). Chem. Rev. 106, 4402.

    Article  CAS  Google Scholar 

  47. Y. Shiraishi, N. Saito, and T. Hirai (2005). J. Am. Chem. Soc. 127, 12820.

    Article  CAS  Google Scholar 

  48. J. Peller, O. Wiest, and P. V. Kamat (2004). J. Phys. Chem. A 108, 10925.

    Article  CAS  Google Scholar 

  49. Y. Du and J. Rabani (2003). J. Phys. Chem. B 107, 11970.

    Article  CAS  Google Scholar 

  50. L. Sun and J. R. Bolton (1996). J. Phys. Chem. 100, 4127.

    Article  CAS  Google Scholar 

  51. L. A. Kibler (2006). Chem. Phys. Chem. 7, 985.

    CAS  Google Scholar 

  52. R. Ganesan, D. J. Ham, and J. S. Lee (2007). Electrochem. Commun. 9, 2576.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gedanken.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

MOESM1 (DOC 1717 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalai Selvan, R., Gedanken, A., Anilkumar, P. et al. Synthesis and Characterization of Rare Earth Orthovanadate (RVO4; R = La, Ce, Nd, Sm, Eu & Gd) Nanorods/Nanocrystals/Nanospindles by a Facile Sonochemical Method and Their Catalytic Properties. J Clust Sci 20, 291–305 (2009). https://doi.org/10.1007/s10876-008-0229-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-008-0229-y

Keywords

Navigation