Skip to main content
Log in

Novel Nanomaterials Based on Inorganic Molybdenum Octahedral Clusters

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this contribution, we present a review of our recent works about the design of phosphor nanoparticles and materials based on [Mo6X14]2− cluster units (X = Cl, Br, I) as well as the functionalization of monocrystalline Si(111) surfaces by Mo6 clusters. Our purpose was to use the specific properties of cluster units found in inorganic solids for the design of new nanomaterials with potential applications in nanotechnologies (e.g. phosphor dyes for bio labelling, light emitting diodes, redox active molecular junctions…) using soft chemistry techniques. Phosphor Cs2Mo6X14@SiO2 nanoparticles emitting in 550–900 nm upon photo-excitation were synthesised using a ‘water in oil’ microemulsion technique. They exhibit a regular shape (~45 nm) and are based on [Mo6X14]2− cluster units and Cs+ counter cations embedded in a silica matrix. ((n–C4H9)4N)2Mo6Br14@ZnO colloids and nanopowders are based on the association of ZnO crystalline nano-particles with Mo6 cluster units adsorbed on their surface. They exhibit a large emission window in the visible region that can be tuned by modulation of the excitation wave length in order to selectively obtain the emission of either clusters units or ZnO nanocrystals or of both entities. Functionalized surfaces were obtained by the attachment of cluster units on a Si(111) surface through pyridine end capped organic chains using a multi-step procedure. Modified surfaces were characterized by X-ray photoemission spectroscopy (XPS), atomic force microscopy (AFM), IR and electrochemical analysis. The surface coverage can be modulated by the controlled introduction of inert organic chains among pyridine end-capped ones before the cluster anchoring step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Chevrel and M. Sergent in O. Fischer, and M. B. Maple (eds.), Topics in Current Physics, Superconductivity in Ternary Compounds I (Springer, New-York, 1982), pp. 25–86.

    Google Scholar 

  2. A. Perrin, C. Perrin, and M. Sergent (1988). J. Less Common Met. 137, 241.

    Article  CAS  Google Scholar 

  3. T. G. Gray (2003). Coord. Chem. Rev. 243, 213.

    Article  CAS  Google Scholar 

  4. N. Prokopuk and D. F. Shriver (1999). Adv. Inorg. Chem. 46, 1.

    Article  Google Scholar 

  5. H. Schäfer and H-Gv Schnering (1964). Angew. Chem. 76, 833.

    Article  Google Scholar 

  6. H. G. von Schnering (1971). Z. Anorg. Allg. Chem. 385, 75.

    Article  Google Scholar 

  7. P. C. Healy, D. L. Kepert, D. Taylor, and A. H. White (1973). J. Chem. Soc. Dalton Trans. 646.

  8. M. Potel, C. Perrin, A. Perrin, and M. Sergent (1986). Mater. Res. Bull. 21, 1239.

    Article  CAS  Google Scholar 

  9. S. Boeschen and H. L. Keller (1992). Z. Kristallogr. 200, 305.

    CAS  Google Scholar 

  10. A. Peppenhorst and H. L. Keller (1996). Z. Anorg. Allg. Chem. 622, 663.

    Article  CAS  Google Scholar 

  11. A. Flemstrom and S. Lidin (2001). Z. Kristallogr. 216, 41.

    CAS  Google Scholar 

  12. J. C. Sheldon (1962). J. Chem. Soc. 410.

  13. F. W. Koknat, T. J. Adaway, S. I. Erzerumand, and S. Syed (1980). Inorg. Nucl. Chem. Lett. 16, 307.

    Article  CAS  Google Scholar 

  14. W. C. Dorman and R. E. Mc Carley (1974). Inorg. Chem. 13, 491.

    Article  CAS  Google Scholar 

  15. K. Kirakci, S. Cordier, and C. Perrin (2005). Z. Anorg. Allg. Chem. 631, 411.

    Article  CAS  Google Scholar 

  16. S. Cordier, N. Naumov, D. Salloum, F. Paul, and C. Perrin (2004). Inorg. Chem. 43, (1), 219.

    Article  CAS  Google Scholar 

  17. D. H. Johnston, C. L. Stern, and D. F. Shriver (1993). Inorg. Chem. 32, 5170.

    Article  CAS  Google Scholar 

  18. D. Mery, L. Plault, C. Ornelas, J. Ruiz, S. Nlate, D. Astruc, J. C. Blais, J. Rodrigues, S. Cordier, K. Kirakci, and C. Perrin (2006). Inorg. Chem. 45, 1156.

    Article  CAS  Google Scholar 

  19. D. Mery, L. Plault, S. Nlate, D. Astruc, S. Cordier, K. Kirakci, and C. Perrin (2005). Z. Anorg. Allg. Chem. 631, 2746.

    Article  CAS  Google Scholar 

  20. S. Cordier, K. Kirakci, D. Mery, C. Perrin, and D. Astruc (2006). Inorg. Chim. Acta. 359, 1705.

    Article  CAS  Google Scholar 

  21. P. Nannelli and B. P. Block (1968). Inorg. Chem. 7, 2423.

    Article  CAS  Google Scholar 

  22. N. Perchenek and A. Simon (1993). Z. Anorg. Allg. Chem. 619, 103.

    Article  CAS  Google Scholar 

  23. T. Hughbanks and R. Hoffmann (1983). J. Am. Chem. Soc. 105, 1150.

    Article  CAS  Google Scholar 

  24. A. W. Maverick and H. B. Gray (1981). J. Am. Chem. Soc. 103, 1298.

    Article  CAS  Google Scholar 

  25. A. W. Maverick, J. S. Najdzionek, D. MacKenzie, D. G. Nocera, and H. B. Gray (1983). J. Am. Chem. Soc. 105, 1878.

    Article  CAS  Google Scholar 

  26. D. G. Nocera and H. B. Gray (1984). J. Am. Chem. Soc. 106, 824.

    Article  CAS  Google Scholar 

  27. J. L. Jackson, C. Turro, M. D. Newsham, and D. G. Nocera (1990). J. Phys. Chem. 94, 4500.

    Article  CAS  Google Scholar 

  28. R. Ramirez-Tagle and R. Arratia-Perez (2008). Chem. Phys. Lett. 460, 438.

    Article  CAS  Google Scholar 

  29. J. H. Golden, H. B. Deng, F. J. DiSalvo, J. M. J. Frechet, and P. M. Thompson (1995). Science. 268, 1463.

    Article  CAS  Google Scholar 

  30. N. Prokopuk, C. S. Weinert, D. P. Siska, C. L. Stern, and D. F. Shriver (2000). Angew. Chem. Int. Ed. 39, 18.

    Article  Google Scholar 

  31. K. Kirakci, H. Hosoda, S. Cordier, C. Perrin, and G. Saito (2006). J. Solid State Chem. 179, 3628.

    Article  CAS  Google Scholar 

  32. G. Pilet, K. Kirakci, F. De Montigny, S. Cordier, C. Lapinte, C. Perrin, and A. Perrin (2005). Eur. J. Inorg. Chem. 5, 919.

    Article  Google Scholar 

  33. L. F. Szcepura, K. A. Ketcham, B. A. Ooro, J. E. Edwards, J. N. Templeton, D. L. Cedeno, and A. Jircitano (2008). Inorg. Chem. 47, 7271.

    Article  Google Scholar 

  34. L. F. Szcepura, B. A. Ooro, and S. R. Wilson (2002). J. Chem. Soc., Dalton Trans. 3112.

  35. J. A. Jackson, M. D. Newsham, C. Worsham, and D. G. Nocera (1996). Chem. Mater. 8, 558.

    Article  CAS  Google Scholar 

  36. D. J. Osborn and G. L. Baker (2005). J. Sol Gel Sci. Technol. 36, 5.

    Article  CAS  Google Scholar 

  37. R. Gosh, G. L. Baker, C. Ruud, and D. G. Nocera (1999). Appl. Phys. Lett. 75, 2885.

    Article  Google Scholar 

  38. C. H. Contag and B. D. Ross (2002). J. Magn. Reson. Imaging. 16, 378.

    Article  Google Scholar 

  39. F. Grasset, F. Dorson, S. Cordier, Y. Molard, C. Perrin, A.-M. Marie, T. Sasaki, H. Haneda, and M. Mortier (2008). Adv. Mater. 20, 143.

    Article  CAS  Google Scholar 

  40. F. Grasset, Y. Molard, F. Dorson, S. Cordier, M. Mortier, C. Perrin, M. Guilloux-Viry, T. Sasaki, and H. Haneda (2008). Chem. Comm. 4729.

  41. M. A. Lopez-Quintela, C. Tojo, M. C. Blanco, L. Garcia Rio, and J. R. Leis (2004). Curr. Opin. Colloid Interface Sci. 9, 264.

    Article  CAS  Google Scholar 

  42. Y. Chen, Y. M. Chi, H. M. Wen, and Z. H. Lu (2007). Anal. Chem. 79, 960.

    Article  CAS  Google Scholar 

  43. L. M. Rossi, L. F. Shi, N. Rosenzweig, and Z. Rosenzweig (2006). Biosens. Bioelectron. 21, 1900.

    Article  CAS  Google Scholar 

  44. M. Q. Tan, G. L. Wang, X. D. Hai, Z. Q. Ye, and J. L. Yuan (2004). J. Mater. Chem. 14, 2896.

    Article  CAS  Google Scholar 

  45. Z. Q. Ye, M. Q. Tan, G. L. Wang, and J. L. Yuan (2004). J. Mater. Chem. 14, 851.

    Article  CAS  Google Scholar 

  46. F. Grasset, R. Marchand, A. M. Marie, D. Fauchadour, and F. J. Fajardie (2006). Inter. Sci. 299, 726.

    CAS  Google Scholar 

  47. F. Grasset, N. Labhsetwar, D. Li, D. C. Park, N. Saito, H. Haneda, O. Cador, T. Roisnel, S. Mornet, E. Duguet, J. Portier, and J. Etourneau (2002). J. Langmuir. 18, 8209.

    Article  CAS  Google Scholar 

  48. Z. Q. Ye, M. Q. Tan, G. L. Wang, and J. L. Yuan (2004). Anal. Chem. 76, 513.

    Article  CAS  Google Scholar 

  49. L. Spanhel (2006). J. Sol-Gel Sci. Technol. 39, 7.

    Article  CAS  Google Scholar 

  50. U. Koch, A. Fojtik, H. Weller, and A. Henglein (1985). Chem. Phys. Lett. 122, 507.

    Article  CAS  Google Scholar 

  51. D. W. Bahnemann, C. Kormann, and M. R. Hoffmann (1987). J. Phys. Chem. 91, 3789.

    Article  CAS  Google Scholar 

  52. L. Spanhel and M. A. Anderson (1991). J. Am. Chem. Soc. 113, 2826.

    Article  CAS  Google Scholar 

  53. F. Grasset, Y. Molard, S. Cordier, F. Dorson, M. Mortier, C. Perrin, M. Guilloux-Viry, T. Sasaki, and H. Haneda (2008). Adv. Mat. 20, 1710.

    Article  CAS  Google Scholar 

  54. S. Ababou-Girard, S. Cordier, B. Fabre, Y. Molard, and C. Perrin (2007). ChemPhysChem. 14, 2086.

    Article  Google Scholar 

  55. W. Grünert, A. Y. Stakheev, R. Feldhaus, K. Anders, E. S. Shpiro, and K. M. Minachev (1991). J. Phys. Chem. 95, 1323.

    Article  Google Scholar 

  56. S. A. Best and R. A. Walton (1979). Inorg. Chem. 18, 484.

    Article  CAS  Google Scholar 

  57. R. J. Errington, S. S. Petkar, B. R. Horrocks, A. Houlton, L. H. Lie, and S. N. Patole (2005). Angew. Chem. Int. Ed. 44, 1254.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the University of Rennes 1, CNRS, NIMS-ICYS, Fondation Langlois, C’Nano Nord-ouest networks as well as ANR-CLUSTSURF program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cordier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordier, S., Dorson, F., Grasset, F. et al. Novel Nanomaterials Based on Inorganic Molybdenum Octahedral Clusters. J Clust Sci 20, 9–21 (2009). https://doi.org/10.1007/s10876-008-0224-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-008-0224-3

Keywords

Navigation