Skip to main content
Log in

Hydrothermal Synthesis, Crystal Structures and Electrochemical Properties of Two Phosphatotungstates Containing Keggin Clusters, [Cu(2,2′-bipy)2]5[PW12O40] · 2H2O and (Hpip)3[PW12O40]

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two new phosphatotungstates containing Keggin clusters, [Cu(2,2′-bipy)2]5[PW12O40] · 2H2O (1) (2,2′-bipy = 2,2′-bipyridine) and (Hpip)3[PW12O40] (2) (pip = piperazine) have been hydrothermally synthesized and characterized by IR, element analysis and cyclic voltammogram. Compound 1 consists of one discrete Keggin polyanion [PW12O40]5−, five isolated complex cations [Cu(2,2′-bipy)2]+ and two water molecules. The organic moieties exhibit regular packing with offset aromatic–aromatic interactions between the bipys, leading to a compact supramolecular framework structure. Compound 2 is made up of one discrete Keggin polyanion [PW12O40]3− and three pip cations. Compounds 1 and 2 were employed to fabricate bulk-modified carbon paste electrode to research on their electrochemistry properties. Their electrochemical behaviors and electrocatalysis that 1- and 2-CPEs have electrocatalytic activities toward the oxidation of nitrite. Compound 1 is in the orthorhombic system, space group Pna21, with a = 28.1928(9), b = 21.5479(6), c = 19.9088(6) Å, V = 12,094.5(6) Å3 and Z = 4. Compound 2 is in the rhombohedral system, space group R\( \overline{3} \)c, with a = 17.9191(5), c = 23.7439(9) Å, V = 6,602.6(4) Å3 and Z = 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. L. Hill (1998). Chem. Rev. 98, 1.

    Article  CAS  Google Scholar 

  2. L. Xu, M. Lu, B. B. Xu, Y. G. Wei, Z. H. Peng, and D. R. Powell (2002). Angew. Chem. Int. Ed. Engl. 114, 4303.

    Article  Google Scholar 

  3. C. L. Hill (2004). Angew. Chem. Int. Ed. Engl. 43, 402.

    Article  CAS  Google Scholar 

  4. T. Yamase (1998). Chem. Rev. 98, 307.

    Article  CAS  Google Scholar 

  5. K. F. Aguey-Zinsou, P. V. Bernhardet, U. Kappler, and A. G. McEwan (2003). J. Am. Chem. Soc. 125, 530.

    Article  CAS  Google Scholar 

  6. M. T. Pope and A. Müller (1991). Angew. Chem. Int. Ed. Engl. 30, 34.

    Article  Google Scholar 

  7. D. L. Long, E. Burkholder, and L. Cronin (2007). Chem. Soc. Rev. 36, 105.

    Article  CAS  Google Scholar 

  8. P. J. Hagrman, D. Hagrman, and J. Zubieta (1999). Angew. Chem. Int. Ed. Engl. 38, 2638.

    Article  Google Scholar 

  9. P. Q. Zheng, Y. P. Ren, L. S. Long, R. B. Huang, and L. S. Zheng (2005). Inorg. Chem. 44, 1190.

    Article  CAS  Google Scholar 

  10. H. Y. An, E. B. Wang, D. R. Xiao, Y. G. Li, Z. M. Su, and L. Xu (2006). Angew. Chem. Int. Ed. Engl. 45, 904.

    Article  CAS  Google Scholar 

  11. G. Y. Luan, Y.G. Li, S. T. Wang, E. B. Wang, Z. B. Han, C. W. Hu, N. H. Hu, and H. Q. Jia (2003). Dalton Trans. 233.

  12. W. B. Yang, C. Z. Lu, and H. H. Zhuang (2002). J. Chem. Soc., Dalton Trans. 2879.

  13. B. Z. Lin, Z. Li, L. W. He, L. Bai, X. F. Huang, and Y. L. Chen (2007). Inorg. Chem. Commun. 10, 600.

    Article  CAS  Google Scholar 

  14. R. N. Devi, E. Burkholder, and J. Zubieta (2003). Inorg. Chim. Acta. 348, 150.

    Article  CAS  Google Scholar 

  15. L. Lisnard, A. Dolbecq, P. Mialane, J. Marrot, and F. Sécheresse (2004). Inorg. Chim. Acta. 357, 845.

    Article  CAS  Google Scholar 

  16. T. H. Li, J. Lu, Sh. Y. Gao, and R. Cao (2007). Inorg. Chem. Commun. 10, 551.

    Article  CAS  Google Scholar 

  17. C. L. Pan, J. Q. Xu, G. H. Li, D. Q. Chu, and T. G. Wang (2003). Eur. J. Inorg. Chem. 1514.

  18. M. T. Pope, Heteropoly and Isopoly Oxometalates (Springer-Verlag, New York, 1983).

    Google Scholar 

  19. M. Sadakane and E. Steckhan (1998). Chem. Rev. 98, 219.

    Article  CAS  Google Scholar 

  20. X. L. Wang, Z. H. Kang, E. B. Wang, and C. W. Hu (2002). Mater. Lett. 56, 393.

    CAS  Google Scholar 

  21. B. X. Dong, J. Peng, A. X. Tian, J. Q. Sha, L. Li, and H. S. Liu (2007). Electrochim. Acta. 52, 3804.

    Article  CAS  Google Scholar 

  22. G. M. Sheldrick, SADABS (University of Göttingen, Germany, 1996).

    Google Scholar 

  23. G. M. Sheldrick, SHELX97 (University of Göttingen, Germany, 1997).

    Google Scholar 

  24. L. W. He, B. Z. Lin, X. Z. Liu, X. F. Huang, and Y. L. Feng (2008). Solid State Sci. 10, 237.

    Article  CAS  Google Scholar 

  25. J. X. Chen, T. Y. Lan, Y. B. Huang, C. X. Wei, Z. S. Li, and Z. C. Zhang (2006). J. Solid State Chem. 179, 1904.

    Article  CAS  Google Scholar 

  26. S. Chang, C. Qin, E. B. Wang, Y. G. Li, and X. L. Wang (2006). Inorg. Chem. Commun. 9, 727.

    Article  CAS  Google Scholar 

  27. Z. Li, B. Z. Lin, J. F. Zhang, F. Geng, G. H. Han, and Pei-De Liu (2006). J. Mol. Struct. 783, 176.

    Article  CAS  Google Scholar 

  28. J. P. Wang, X. Y. Duan, and J. Y. Niu (2004). J. Mol. Struct. 692, 17.

    Article  CAS  Google Scholar 

  29. I. D. Brown and D. Altermatt (1985). Acta Crystallogr. Set. B. 41, 244.

    Article  Google Scholar 

  30. B. Z. Lin, and S. X. Liu (2002) Chem. Commun. 2126.

  31. J. Y. Niu, Y. Shen, and J. P. Wang (2005). J. Mol. Struct. 733, 19.

    Article  CAS  Google Scholar 

  32. C. M. Liu, D. Q. Zhang, and D. B. Zhu (2003). Cryst. Growth Des. 3, 363.

    Article  CAS  Google Scholar 

  33. J. Y. Niu, D. J. Guo, J. W. Zhao, and J. P. Wang (2004). New J. Chem. 28, 980.

    Article  CAS  Google Scholar 

  34. B. Z Lin, Y. M. Chen, and P. D. Liu (2003) Dalton Trans. 2474.

  35. T. Y. Lan, J. X. Chen, C. X. Wei, Z. S. Li, Y. B. Huang, W. J. Zhang, and Z. C. Zhang (2006). Chin. J. Struct. Chem. 25, 368.

    CAS  Google Scholar 

  36. Z. Li, B. Z. Lin, G. H. Han, F. Geng, and P. D. Liu (2005). Chin. J. Struct. Chem. 24, 608.

    CAS  Google Scholar 

  37. Z. G. Han, Y. L. Zhao, J. Peng, H. Y. Ma, Q. Liu, E. B. Wang, and N. H. Hu (2004). J. Solid State Chem. 177, 4325.

    Article  CAS  Google Scholar 

  38. J. E. Toth and F. C. Anson (1989). J. Am. Chem. Soc. 111, 219.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the NSF of Fujian Province (nos. E0420001, 2005HZ01-4) and NCETFJ for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Zhou Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 (DOC 239kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, L., Lin, BZ., Huang, XF. et al. Hydrothermal Synthesis, Crystal Structures and Electrochemical Properties of Two Phosphatotungstates Containing Keggin Clusters, [Cu(2,2′-bipy)2]5[PW12O40] · 2H2O and (Hpip)3[PW12O40]. J Clust Sci 19, 561–572 (2008). https://doi.org/10.1007/s10876-008-0202-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-008-0202-9

Keywords

Navigation