Skip to main content
Log in

Synthesis and Characterization of N3P3(O2C12H8)2(OC6H4Si(CH3)3)(OC6H4Br) and Its Conversion to Nanostructured Si Material

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A new silicated cyclotriphosphazene N3P3(O2C12H8)2(OC6H4Si(CH3)3)(OC6H4Br) 1 has been synthesized and characterized. The solid state pyrolysis of 1 in air gives a nanostructured SiP2O7 3D network. The morphology of the network strongly depends on the temperature of the pyrolysis. Spinal-like columns and ring-shaped SiP2O7 are formed at 800 °C, while, at 600 °C, fused grains of about 300 nm were observed. Based on air TG and DSC thermal studies, we propose the mechanism of formation for the nanostructured network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Gleria and R. Pager (2004) Applications Aspects of Cyclotriphosphazenes (Nova, 2004)

  2. H. R. Allcock, D. J. Brennan, J. M. Graaskamp, and M. Parvez (1986). Organometallics 5, 2435.

    Google Scholar 

  3. H. R. Allcock, D. J. Brennan, and D. Beverly (1988). Macromolecules 27, 3226.

    CAS  Google Scholar 

  4. H. R. Allcock and D. J. Brennan (1988). J. Organomet. Chem. 341, 231.

    Article  CAS  Google Scholar 

  5. G. A. Carriedo and F. Garcia-Alonso, High molecular weight polyspirophosphazenes. In Phosphazenes :A World Insight, eds. R. Jaeger, M. Gleria. Nova Sci. Publ: New York, 2005.

    Google Scholar 

  6. C. N. Rao, A. Muller, and A. K. Cheetham, The Chemistry of Nanomaterials. Wiley—VCH, 2003.

  7. L. Tsybeskov (1998). MRS. Bull. 23, 33 .

    CAS  Google Scholar 

  8. A. Shah, P. Torres, R. Tscharner, R. Wyrsch, and H. Keppner (1992). Science 285, 692.

    Article  Google Scholar 

  9. C. Diaz and M. L. Valenzuela (2005). J. Chil. Chem. Soc. 50, 417.

    Article  CAS  Google Scholar 

  10. C. Diaz and M. L. Valenzuela (2006). Macromolecules 39, 103.

    Article  CAS  Google Scholar 

  11. C. Diaz, P. Castillo, and M. L. Valenzuela (2005). J. Cluster Sci. 16, 515.

    Article  CAS  Google Scholar 

  12. C. Diaz and M. L. Valenzuela (2006). J. Inorg. Organometallic Polym. 6, 123.

    Article  CAS  Google Scholar 

  13. C. Diaz and M. L. Valenzuela, Coordination of organometallic fragments to polyphosphazene containing side groups with donors atoms. In Horizons in Polymer Developments, ed. R. B. Bregg. Nova Science Publishers: NewYork, 2006.

    Google Scholar 

  14. C. Diaz, D. Abizanda, J. Jimenez, A. Laguna, and M. L. Valenzuela (2006). J. Inorg. Organometallic Polym. 6, 211.

    Article  CAS  Google Scholar 

  15. C. Diaz and M. L. Valenzuela (2006). J. Inorg. Organometallic Polym. 6, 419.

    Google Scholar 

  16. C. Diaz, M. L. Valenzuela, and N. Yutronic (2007). J. Inorg. Organomet. Polym. 17, 577.

    Article  CAS  Google Scholar 

  17. C. Diaz, E. Spodine, Y. Moreno, O. Peña, and M. L. Valenzuela (2007). J. Cluster Science, 19, 831.

    Article  CAS  Google Scholar 

  18. G. A. Carriedo, L. Fernandez-Catuxo, F. J. Garcia-Alonso, P. Gomez-Elipe, and P. A. Gonzalez (1996). Macromolecules 29, 5320.

    Article  CAS  Google Scholar 

  19. D. Kumar and A. D. Gupta (1995). Macromolecules 28, 6323.

    Article  CAS  Google Scholar 

  20. I. Dez, J. Levalois-Mitjaville, H. Grutzmacher, V. Gramlich, and R. De Jaeger (1999). Eur. J. Inorg. Chem. 1673.

  21. A. Vij, J. Geib, R. L. Kirchmeier, and J. M. Shreeve (1996). Inorg. Chem. 35, 2915.

    Article  CAS  Google Scholar 

  22. D. M. Poojaray, R. B. Borade, F. L. Campbell, and A. Clearfield (1994). J. Solid State Chem. 112, 106.

    Article  Google Scholar 

  23. N. Shibata, M. Horigudhi, and T. Edahiro (1981). J. Non-Crystalline Solids 45, 115.

    Article  CAS  Google Scholar 

  24. J. Wong (1973). J. Non-Crystalline Solids 20, 83.

    Article  Google Scholar 

  25. T. V. Kovalchuk, H. Sfihi, A. Korchev, S. Kovalenko, V. N. II´in, V. G. Zaitzev, and J. Fraissard (2005). J.Phys. Chem. B 109, 13948. doi:10.1021/jp0580625.

    Article  CAS  Google Scholar 

  26. D. M. Karpinos, E. P. Mikhashchuk, R. A. Amirov, and U. Sh. Shayakhmetov (1982). Power Meta. Met. Cer. 21: 388.

    Article  Google Scholar 

  27. S. Suehara, T. Konishi, and S. Inoue (2006). Phys. Rev. B73, 092203.

    Google Scholar 

  28. T. Uma and M. Nogami (2006). Mater. Chem. Phys. 98, 382.

    Article  CAS  Google Scholar 

  29. J. Roman, S. Padilla, and M. Vallet-Regi (2003). Chem Mater. 15, 798.

    Article  CAS  Google Scholar 

  30. N. Nishiyama, J. Kaihara, Y. Nishiyama, Y. Egashira, and K. Ueyama (2007). Langmuir 23, 4746.

    Article  CAS  Google Scholar 

  31. T. Matsui, T. Kukino, R. Kikuchi, and K. Eguchi (2006). J. Electrochem. Soc. 157A, 339.

    Article  CAS  Google Scholar 

  32. J. H. Coetze, T. N. Mashapa, N. M. Prinsloo, and J. D. Rademan (2006). Appl. Catal. A 308, 204.

    Google Scholar 

  33. T. R. Krawietz, P. Lin, K. E. Lotterhos, P. D. Torres, A. C. Barich, and J. F. Haw (1998). J. Am. Chem. Soc. 120, 8501.

    Article  Google Scholar 

  34. T. Matsui, T. Kukino, R. Kikuchi, and K. Eguchi (2006). Electrochim. Acta 51, 3719.

    Article  CAS  Google Scholar 

  35. Y. Daiko, T. Kasuga, and M. Nogami (2002). Chem. Mater. 14, 4624.

    Article  CAS  Google Scholar 

  36. M. Nogami, Y. Daiko, T. Akai, and T. Kasuga (2001). J. Phys. Chem. 105, 4653.

    CAS  Google Scholar 

  37. A. T. Bell (2003). Science 299, 1688.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially suppported by Fondecyt (Project 3060092) and MECESUP Project UCH0116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, C., Valenzuela, M.L. & Ushak, S. Synthesis and Characterization of N3P3(O2C12H8)2(OC6H4Si(CH3)3)(OC6H4Br) and Its Conversion to Nanostructured Si Material. J Clust Sci 19, 471–479 (2008). https://doi.org/10.1007/s10876-008-0189-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-008-0189-2

Keywords

Navigation