Abstract
Reacting MoO2(acac)2 with Ph2POOH or Me2POOH in EtOH results in the formation of the tetranuclear molybdenum (V) clusters Mo4(μ 3-O)4(μ-O2PR2)4O4, PR2 = PPh2, 1, or PMe2, 2, in functional yields (>90% and 55% respectively). The reaction of WO2(acac)2 with Ph2POOH in MeOH affords the tungsten dimer [(CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2], 3. The single crystal X-ray determined structures of complexes 1–3 are reported. In 1 and 2, the four Mo=O units are interconnected by four triply bridging oxygen atoms, resulting in a distorted cubic-like structure for the Mo4(μ 3-O)4O4 units. Each molybdenum atom forms two additional Mo–O bonds with two oxygen atoms from different adjacent phosphinato ligands. Complex 3, a tungsten dimer, contains packing disorder and consists of bridging oxo and diphenylphosphinato ligands. The bonding of 1 and 2 assessed by density-functional methods showed that bonding between the Mo(V) centers occurs through σ overlap of the d xy orbitals.
This is a preview of subscription content, access via your institution.






References
A. S. Foust and L. F. Dahl (1970). J. Am. Chem. Soc. 92, 7337.
C. T.-W. Chu, F. Y.-K. Lo, and L. F. Dahl (1982). J. Am. Chem. Soc. 104, 3409.
R. C. Haushalter, K. G. Strohmaier, and F. W. Lai (1989). Science 246, 1289.
J.-Z. Wu, E. Sellitto, G. P. A. Yap, J. Sheats, and G. C. Dismukes (2004). Inorg. Chem. 43, 5795 and appropriate references therein.
P. D. Williams and M. D. Curtis (1986). Inorg. Chem. 25, 4562.
E. W. Corcoran (1990). Inorg. Chem. 29, 157.
W. Schirmer, U. Flörke, and H.-J. Haupt (1989). Z . Anorg. Allg. Chem. 574, 239.
G. S. Kim, D. A. Keszler, and C. W. DeKock (1991). Inorg. Chem. 30, 574.
(a) D. Attanasio, M. Bonamico, V. Fares, and L. Suber (1992). J. Chem. Soc., Dalton Trans. 2523. (b) L. Benmenni-Boukli-Hacene, A. Yacouta-Nour, M. M. Mostafa, and M. Pierrot, (2002). J. Soc. Alger. Chim. 12, 153. (c) J. Luo, M. Hong, R. Wang, Q. Shi, R. Cao, J. Weng, R. Sun, and H. Zhang (2003). Inorg. Chem. Commun. 6, 702. (d) P. Roman, M. Martinez-Ripoll, and J. Jaud (1982). Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 158, 141. (e) X.-J. Wang, B.-S. Kang, C.-Y. Su, K.-B. Yu, H.-X. Zhang, and Z.-N. Chen (1999). Polyhedron 18, 3371.
B. Modec, J. V. Brencic, E. M. Burkholder, and J. Zubieta (2003). Dalton Trans. 4618.
L. A. Mundi and R. C. Haushalter (1991). J. Am. Chem. Soc. 113, 6340.
R. Mattes and K. Muhlsiepen (1980). Z. Naturforsch., B: Chem. Sci. 35, 265.
G. Wang, A. Jimtaisong, and R. L. Luck (2005). Inorg. Chimica. Acta. 358, 933.
A. Jimtaisong and R. L. Luck (2005). J. Cluster Sci. 16, 167.
A. Jimtaisong and R. L. Luck (2006). Inorg. Chem. 45, 10391.
A. Sabatini and I. Bertini (1966). Inorg. Chem. 5, 204.
J. A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill Book Company, 1985), 13th ed. Table 6-2.
J.-M. Brégeault, J.-Y. Piquemal, E. Briot, E. Duprey, F. Launay, L. Salles, M. Vennat, and A.-P. Legrand (2001). Microporous Mesoporous Mater. 44–45, 409.
L. J. Farrugia (1997). J. Appl. Crystallogr. 30, 565.
R. H. Crabtree, The Organometallic Chemistry of the Transition Metals (Wiley-Interscience, 2001), 3rd ed., Chap. 13.
B. Modec, J. V. Brenčič, E. M. Burkholder, and J. Zubieta (2003). Dalton Trans. 24, 4618.
(a) R. C. Haushalter (2001). J. Chem. Soc., Chem. Commun. 20, 1566. (b) G. Bonavia, R. C. Haushalter, C. J. O’Connor, and J. Zubieta (1996). Inorg. Chem. 35, 5603. (c) N. M. Gresley, W. P. Griffith, B. C. Parkin, A. J. P. White, and D. J. Williams (1996). J. Chem. Soc., Dalton Trans. 10, 2039.
M. Sokolov, P. Esparza, R. Hernandez-Molina, J. G. Platas, A. Mederos, J. A. Gavin, R. Llusar, and C. Vicent (2005). Inorg. Chem. 44, 1132.
V. P. Fedin, I. V. Kalinina, D. G. Samsonenko, Y. V. Mironov, M. N Sokolov, S. V. Tkachev, A. V. Virovets, N. V. Podberezskaya, M. R. J. Elsegood, W. Clegg, and A. G. Sykes (1999). Inorg. Chem. 38, 1956.
K. Nishikawa, K. Kido, J. Yoshida, T. Nishioka, I. Kinoshita, B. K. Breedlove, Y. Hayashi, A. Uehara, and K. Isobe (2003). Appl. Organomet. Chem. 17, 446.
N. M. Gresley, W. P. Griffith, A. J. P White, and D. J. Williams (1997). J. Chem. Soc., Dalton Trans. 89.
P. Muller, R. Herbst-Irmer, A. L. Spek, T. R. Schneider, and M. R. Sawaya, Crystal Structure Refinement. IUCR (Oxford University Press, 2006).
E. N. Tsvetkov, N. A. Bondarenko, I. G. Malakhova, and M. I. Kabachnik (1986). Synthesis 3, 198.
D. L. Vaenezky and C. F. Poranski (1967). J. Org. Chem. 32, 838.
G. M. Kosolapoff and R. M. Watson (1951). J. Am. Chem. Soc. 73, 5466.
H. Reinhardt, D. Bianchi, and D. Molle (1957). Chem. Ber. 90, 1656.
C. A. Rice, P. M. H. Kroneck, and J. T. Spence (1981). Inorg. Chem. 20, 1996.
T. Vreven, B. Mennucci, C. O. da Silva, K. Morokuma, and J. Tomasi (2001). J. Chem. Phys. 115, 62.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision C.02 (Pople Gaussian, Inc., Wallingford, 2004).
(a) A. D. Becke (1988). Phys. Rev. A38, 3098. (b) C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B37, 785. (c) R. Colle and O. Salvetti (1975). Theor. Chim. Acta 37, 329.
(a) L. A. LaJohn, P. A. Christiansen, R. B. Ross, T. Atashroo, and W. C. Ermler (1987). J. Chem. Phys. 87, 2812. (b) R. B. Ross, J. M. Powers, T. Atashroo, W. C. Ermler, L. A. LaJohn, and P. A. Christiansen (1990). J. Chem. Phys. 93, 6654.
M. Couty and M. B. Hall (1996). J. Comput. Chem. 17, 1359.
W.R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284.
T.H. Dunning (1971). J. Chem. Phys. 55, 716.
Acknowledgment
We thank Michigan Technological University for support of this research.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to the memory of Professor F. A. Cotton. Veritas numquam perit.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Jimtaisong, A., Feng, L., Sreehari, S. et al. Rational Synthesis of Molybdenum(V) Tetramers Consisting of [Mo2O4]2+ Dimers Held Together by Bridging Phosphinate Ligands and the Tungsten(VI) Dimer [(CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2]: Structural and Theoretical Considerations. J Clust Sci 19, 181–195 (2008). https://doi.org/10.1007/s10876-007-0170-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10876-007-0170-5
Keywords
- Oxo molybdenum
- Tetranuclear cluster
- Distorted cube
- Diphenylphosphinic acid
- Oxo-bridged tungsten dimer