Skip to main content

Rational Synthesis of Molybdenum(V) Tetramers Consisting of [Mo2O4]2+ Dimers Held Together by Bridging Phosphinate Ligands and the Tungsten(VI) Dimer [(CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2]: Structural and Theoretical Considerations

Abstract

Reacting MoO2(acac)2 with Ph2POOH or Me2POOH in EtOH results in the formation of the tetranuclear molybdenum (V) clusters Mo4(μ 3-O)4(μ-O2PR2)4O4, PR2 = PPh2, 1, or PMe2, 2, in functional yields (>90% and 55% respectively). The reaction of WO2(acac)2 with Ph2POOH in MeOH affords the tungsten dimer [(CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2], 3. The single crystal X-ray determined structures of complexes 1–3 are reported. In 1 and 2, the four Mo=O units are interconnected by four triply bridging oxygen atoms, resulting in a distorted cubic-like structure for the Mo4(μ 3-O)4O4 units. Each molybdenum atom forms two additional Mo–O bonds with two oxygen atoms from different adjacent phosphinato ligands. Complex 3, a tungsten dimer, contains packing disorder and consists of bridging oxo and diphenylphosphinato ligands. The bonding of 1 and 2 assessed by density-functional methods showed that bonding between the Mo(V) centers occurs through σ overlap of the d xy orbitals.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. A. S. Foust and L. F. Dahl (1970). J. Am. Chem. Soc. 92, 7337.

    Article  Google Scholar 

  2. C. T.-W. Chu, F. Y.-K. Lo, and L. F. Dahl (1982). J. Am. Chem. Soc. 104, 3409.

    Article  Google Scholar 

  3. R. C. Haushalter, K. G. Strohmaier, and F. W. Lai (1989). Science 246, 1289.

    Article  CAS  Google Scholar 

  4. J.-Z. Wu, E. Sellitto, G. P. A. Yap, J. Sheats, and G. C. Dismukes (2004). Inorg. Chem. 43, 5795 and appropriate references therein.

  5. P. D. Williams and M. D. Curtis (1986). Inorg. Chem. 25, 4562.

    Article  CAS  Google Scholar 

  6. E. W. Corcoran (1990). Inorg. Chem. 29, 157.

    Article  CAS  Google Scholar 

  7. W. Schirmer, U. Flörke, and H.-J. Haupt (1989). Z . Anorg. Allg. Chem. 574, 239.

    CAS  Google Scholar 

  8. G. S. Kim, D. A. Keszler, and C. W. DeKock (1991). Inorg. Chem. 30, 574.

    Article  CAS  Google Scholar 

  9. (a) D. Attanasio, M. Bonamico, V. Fares, and L. Suber (1992). J. Chem. Soc., Dalton Trans. 2523. (b) L. Benmenni-Boukli-Hacene, A. Yacouta-Nour, M. M. Mostafa, and M. Pierrot, (2002). J. Soc. Alger. Chim. 12, 153. (c) J. Luo, M. Hong, R. Wang, Q. Shi, R. Cao, J. Weng, R. Sun, and H. Zhang (2003). Inorg. Chem. Commun. 6, 702. (d) P. Roman, M. Martinez-Ripoll, and J. Jaud (1982). Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 158, 141. (e) X.-J. Wang, B.-S. Kang, C.-Y. Su, K.-B. Yu, H.-X. Zhang, and Z.-N. Chen (1999). Polyhedron 18, 3371.

  10. B. Modec, J. V. Brencic, E. M. Burkholder, and J. Zubieta (2003). Dalton Trans. 4618.

  11. L. A. Mundi and R. C. Haushalter (1991). J. Am. Chem. Soc. 113, 6340.

    Article  CAS  Google Scholar 

  12. R. Mattes and K. Muhlsiepen (1980). Z. Naturforsch., B: Chem. Sci. 35, 265.

    Google Scholar 

  13. G. Wang, A. Jimtaisong, and R. L. Luck (2005). Inorg. Chimica. Acta. 358, 933.

    Article  CAS  Google Scholar 

  14. A. Jimtaisong and R. L. Luck (2005). J. Cluster Sci. 16, 167.

    Article  CAS  Google Scholar 

  15. A. Jimtaisong and R. L. Luck (2006). Inorg. Chem. 45, 10391.

    Article  CAS  Google Scholar 

  16. A. Sabatini and I. Bertini (1966). Inorg. Chem. 5, 204.

    Article  CAS  Google Scholar 

  17. J. A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill Book Company, 1985), 13th ed. Table 6-2.

  18. J.-M. Brégeault, J.-Y. Piquemal, E. Briot, E. Duprey, F. Launay, L. Salles, M. Vennat, and A.-P. Legrand (2001). Microporous Mesoporous Mater. 44–45, 409.

    Article  Google Scholar 

  19. L. J. Farrugia (1997). J. Appl. Crystallogr. 30, 565.

    Article  CAS  Google Scholar 

  20. R. H. Crabtree, The Organometallic Chemistry of the Transition Metals (Wiley-Interscience, 2001), 3rd ed., Chap. 13.

  21. B. Modec, J. V. Brenčič, E. M. Burkholder, and J. Zubieta (2003). Dalton Trans. 24, 4618.

    Article  Google Scholar 

  22. (a) R. C. Haushalter (2001). J. Chem. Soc., Chem. Commun. 20, 1566. (b) G. Bonavia, R. C. Haushalter, C. J. O’Connor, and J. Zubieta (1996). Inorg. Chem. 35, 5603. (c) N. M. Gresley, W. P. Griffith, B. C. Parkin, A. J. P. White, and D. J. Williams (1996). J. Chem. Soc., Dalton Trans. 10, 2039.

  23. M. Sokolov, P. Esparza, R. Hernandez-Molina, J. G. Platas, A. Mederos, J. A. Gavin, R. Llusar, and C. Vicent (2005). Inorg. Chem. 44, 1132.

    Article  CAS  Google Scholar 

  24. V. P. Fedin, I. V. Kalinina, D. G. Samsonenko, Y. V. Mironov, M. N Sokolov, S. V. Tkachev, A. V. Virovets, N. V. Podberezskaya, M. R. J. Elsegood, W. Clegg, and A. G. Sykes (1999). Inorg. Chem. 38, 1956.

    Article  CAS  Google Scholar 

  25. K. Nishikawa, K. Kido, J. Yoshida, T. Nishioka, I. Kinoshita, B. K. Breedlove, Y. Hayashi, A. Uehara, and K. Isobe (2003). Appl. Organomet. Chem. 17, 446.

    Article  CAS  Google Scholar 

  26. N. M. Gresley, W. P. Griffith, A. J. P White, and D. J. Williams (1997). J. Chem. Soc., Dalton Trans. 89.

  27. P. Muller, R. Herbst-Irmer, A. L. Spek, T. R. Schneider, and M. R. Sawaya, Crystal Structure Refinement. IUCR (Oxford University Press, 2006).

  28. E. N. Tsvetkov, N. A. Bondarenko, I. G. Malakhova, and M. I. Kabachnik (1986). Synthesis 3, 198.

    Article  Google Scholar 

  29. D. L. Vaenezky and C. F. Poranski (1967). J. Org. Chem. 32, 838.

    Article  Google Scholar 

  30. G. M. Kosolapoff and R. M. Watson (1951). J. Am. Chem. Soc. 73, 5466.

    Article  CAS  Google Scholar 

  31. H. Reinhardt, D. Bianchi, and D. Molle (1957). Chem. Ber. 90, 1656.

    Article  CAS  Google Scholar 

  32. C. A. Rice, P. M. H. Kroneck, and J. T. Spence (1981). Inorg. Chem. 20, 1996.

    Article  CAS  Google Scholar 

  33. T. Vreven, B. Mennucci, C. O. da Silva, K. Morokuma, and J. Tomasi (2001). J. Chem. Phys. 115, 62.

    Article  CAS  Google Scholar 

  34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision C.02 (Pople Gaussian, Inc., Wallingford, 2004).

  35. (a) A. D. Becke (1988). Phys. Rev. A38, 3098. (b) C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B37, 785. (c) R. Colle and O. Salvetti (1975). Theor. Chim. Acta 37, 329.

  36. (a) L. A. LaJohn, P. A. Christiansen, R. B. Ross, T. Atashroo, and W. C. Ermler (1987). J. Chem. Phys. 87, 2812. (b) R. B. Ross, J. M. Powers, T. Atashroo, W. C. Ermler, L. A. LaJohn, and P. A. Christiansen (1990). J. Chem. Phys. 93, 6654.

    Google Scholar 

  37. M. Couty and M. B. Hall (1996). J. Comput. Chem. 17, 1359.

    Article  CAS  Google Scholar 

  38. W.R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284.

    Article  CAS  Google Scholar 

  39. T.H. Dunning (1971). J. Chem. Phys. 55, 716.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Michigan Technological University for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudy L. Luck.

Additional information

Dedicated to the memory of Professor F. A. Cotton. Veritas numquam perit.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jimtaisong, A., Feng, L., Sreehari, S. et al. Rational Synthesis of Molybdenum(V) Tetramers Consisting of [Mo2O4]2+ Dimers Held Together by Bridging Phosphinate Ligands and the Tungsten(VI) Dimer [(CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2]: Structural and Theoretical Considerations. J Clust Sci 19, 181–195 (2008). https://doi.org/10.1007/s10876-007-0170-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-007-0170-5

Keywords

  • Oxo molybdenum
  • Tetranuclear cluster
  • Distorted cube
  • Diphenylphosphinic acid
  • Oxo-bridged tungsten dimer