Skip to main content
Log in

FT-IR Investigation of the State of Iron(III) Chloride Clusters Confined in AOT Reverse Micelles Dispersed in Carbon Tetrachloride

  • Original Research Papers
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The state of the water-soluble salt iron(III) chloride in AOT reverse micelles dispersed in carbon tetrachloride has been investigated by FT-IR spectroscopy. Interestingly, while the entrapment of a lot of water-soluble inorganic salts in AOT reverse micelles requires preliminarily the presence of significant amounts of water within the micellar core, solubilization of FeCl3 occurs without the need to add water in the micellar solution reaching the very high solubility value, expressed as the maximum salt-to-surfactant molar ratio, of 1.30. The analysis of the spectral features of the investigated samples leads to hypothesize that iron(III) chloride is confined within the reverse micellar core as small size melted clusters of ionic species arising from the reactions

$$ {\text{FeCl}}_{{\text{3}}} + {\text{FeCl}}_{{\text{3}}} \to {\text{FeCl}}^{ + }_{{\text{2}}} + {\text{FeCl}}^{ - }_{{\text{4}}} {\text{ }} $$
$$ {\text{FeCl}}_{{\text{3}}} + {\text{FeCl}}^{ - }_{{\text{4}}} \to {\text{Fe}}_{{\text{2}}} {\text{Cl}}^{ - }_{{\text{7}}} $$

accompanied by a marked structural rearrangement of the AOT head group domain surrounding the micellar core and a shift of the sodium counterion from the micellar core surface to its interior. This picture has been further corroborated by conductivity measurements of FeCl3/AOT/CCl4 solutions as a function of the salt-to-surfactant molar ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Giordano, A. Longo, V. Turco Liveri, and A. M. Venezia (2003). Coll. Polym. Sci. 281, 229

    Article  CAS  Google Scholar 

  2. E. Caponetti, D. Chillura-Martino, F. Ferrante, L. Pedone, A. Ruggirelllo, and V. Turco Liveri (2003). Langmuir 19, 4913

    Article  CAS  Google Scholar 

  3. P. Calandra, A. Longo, A. Ruggirello, and V. Turco Liveri (2004). J. Phys. Chem. B 108, 8260

    Article  CAS  Google Scholar 

  4. L. Ceraulo, F. Filizzola, A. Longo, A. Ruggirello, and V. Turco Liveri (2006). Coll. Polym. Sci. 284, 1085

    Article  CAS  Google Scholar 

  5. A. Longo, A. Ruggirello, and V. Turco Liveri (2007). Chem. Mater. 19, 1127

    Article  CAS  Google Scholar 

  6. J. Jang, and H. Yoon (2005). Langmuir 21, 11484

    Article  CAS  Google Scholar 

  7. P. Calandra, A. Longo, V. Marcianò, and V. Turco Liveri (2003). J. Phys. Chem. B 107, 6724

    Article  CAS  Google Scholar 

  8. Y. Zhou, W.-J. Liu, W. Zhang, X.-Y. Cao, Q.-F. Zhou, Y. Ma, and J. Pei (2006). J. Org. Chem. 71(18), 6822

    Article  CAS  Google Scholar 

  9. S.-M. Yiu, Z.-B. Wu, C.-K. Mak, and T.-C. Lau (2004). J. Am. Chem. Soc. 126(45), 14921

    Article  CAS  Google Scholar 

  10. M. I. Boyer, S. Quillard, G. Louarn, G. Froyer, and S. Lefrant (2000). J. Phys. Chem. B 104(38), 8952

    Article  CAS  Google Scholar 

  11. P. Piaggio, G. Musso, and G. Delle Piane (1995). J. Phys. Chem. 99, 4187

    Article  CAS  Google Scholar 

  12. Z. Ai, L. Lu, J. Li, L. Zhang, J. Qiu, and M. Wu (2007). J. Phys. Chem. C 111, 4087

    Article  CAS  Google Scholar 

  13. S. Wang, Y. Min, and S. Yu (2007). J. Phys. Chem. C 111, 3551

    Article  CAS  Google Scholar 

  14. P. Calandra, C. Giordano, A. Ruggirello, and V. Turco Liveri (2004). J. Coll. Interf. Sci. 277, 206

    Article  CAS  Google Scholar 

  15. G. N. Papatheodorou, and G. A. Voyatzis (1999). Chem. Phys. Lett. 303, 151

    Article  CAS  Google Scholar 

  16. G. Giammona, F. Goffredi, V. Turco Liveri, and G. Vassallo (1992). J. Coll. Interf. Sci. 154, 411

    Article  CAS  Google Scholar 

  17. Q. Li, S. Weng, J. Wu, and N. Zhou (1998). J. Phys. Chem. B 102, 3168

    Article  CAS  Google Scholar 

  18. J. Lucassen, and M. G. B. Drew (1987). J. Chem. Soc. Faraday Trans. I 83, 3093

    Article  CAS  Google Scholar 

  19. Y. Nagasoe, N. Ichiyanagi, H. Okabayashi, S. Nave, J. Eastoe, and C. J. O’Connor (1999). PCCP 1, 4395

    CAS  Google Scholar 

  20. P. Piszczek, A. Grodzicki, and B. Engelen (2003). J. Mol. Struct. 646, 45

    Article  CAS  Google Scholar 

  21. P. D. Moran, G. A. Bowmaker, R. P. Cooney, J. R. Bartlett, and J. L. Woolfrey (1995). Langmuir 11, 738

    Article  CAS  Google Scholar 

  22. P. Calandra, E. Caponetti, D. Chillura-Martino, P. D’Angelo, A. Minore, and V. Turco Liveri (2000). J. Mol. Struct. 522, 165

    Article  CAS  Google Scholar 

  23. Y. Nagasoe, H. Okabayashi, M. Abe, J. Eastoe, and C. J. O’Connor (2000). Vibrat. Spectrosc. 23, 151

    Article  CAS  Google Scholar 

  24. R. A. Work, and R. L. McDonald (1973). Inorg. Chem. 12, 1936

    Article  CAS  Google Scholar 

  25. V. Arcoleo, M. Goffredi, and V. Turco Liveri (1995). J. Solut. Chem. 24, 1135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from MIUR 60% and PRIN 2006 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Turco Liveri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceraulo, L., Fanara, S., Ruggirello, A. et al. FT-IR Investigation of the State of Iron(III) Chloride Clusters Confined in AOT Reverse Micelles Dispersed in Carbon Tetrachloride. J Clust Sci 18, 883–895 (2007). https://doi.org/10.1007/s10876-007-0149-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-007-0149-2

Keywords

Navigation