Skip to main content

Hydrocarbon Molecules Deposited onto Silicon Surfaces: A DFT Study of Adsorption and Conductance

Abstract

The purpose of this study is a systematic description of the properties of small deposited clusters in dependence of the cluster geometry and composition and of the shape of the adsorbing surface. Therefore hydrocarbon molecules deposited onto the dimerized Si(100) surface and onto monolayer steps of this surface, are considered and the properties of these systems are determined using the Density Functional and scattering theories. It has been found that, though the step is a weaker sink than the flat surface, the molecules are bonded to the step and the adsorption geometries reproduce the ones of the flat surface. The transmission function depends on the type of molecule and of the substrate and on the transport channels available to the deposited system. However the contact potential has a paramount importance and deep resonances are produced by a proper tuning of this quantity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    J. T. Yates Jr. (1998). Science 279, 335.

    Article  CAS  Google Scholar 

  2. 2.

    S. F. Bent (2002). Surf. Sci. 500, 879.

    Article  CAS  Google Scholar 

  3. 3.

    P. A. Taylor, R. M. Wallace, C. C. Cheng, W. H. Weinberg, M. J. Dresser, W. J. Choke, and J. T. Jates Jr. (1992). J. Am. Chem. Soc. 114, 6754.

    Article  CAS  Google Scholar 

  4. 4.

    Y. C. Choi, W. Y. Kim, K.-S. Park, P. Trakehswar, K. S. Kim, T. S. Kim, and J. Y. Lee (2005). J. Chem. Phys. 122, 94706.

    Article  Google Scholar 

  5. 5.

    S. Jalili and H. R. Tabar (2005). Phys. Rev. B. 71, 165410.

    Article  Google Scholar 

  6. 6.

    N. Agrait, A. L. Yegati, and J. M. van Ruitenbeck (2004). Phys. Rep. 377, 81.

    Article  Google Scholar 

  7. 7.

    C. Gonzalez, P. C. Snijders, J. Ortega, R. Perez, F. Flores, S. Rogge, and H. H. Weitering (2004). Phys. Rev. Lett. 12, 126106.

    Article  Google Scholar 

  8. 8.

    J. R. Ahn, N. D. Kim, H. S. Lee, C. C. Hwang, B. S. Kim, and H. W. Yeom (2002). Phys. Rev. B. 66, 153403.

    Article  Google Scholar 

  9. 9.

    J. N. Crain, J. L. McChesney, F. Zheng, M. C. Gallagher, P. C. Snijders, M. Bissen, C. Gundelach, S. C. Erwin, and F. J. Himpsel (2004). Phys. Rev. B. 69, 125401.

    Article  Google Scholar 

  10. 10.

    S. S. Lee, J. R. Ahn, N. D. Kim, J. H. Min, C. G. Wang, J. W. Chun, H. W. Yeom, S. V. Ryjkov, and S. Hasegawa (2002). Phys. Rev. Lett. 88, 196401.

    Article  CAS  Google Scholar 

  11. 11.

    S. C. Erwin (2003). Phys. Rev. Lett. 91, 206101.

    Article  Google Scholar 

  12. 12.

    J. N. Crain, A. Kirakosian, K. N. Altman, C. Bromberger, S. C. Erwin, J. L. McChesney, J. J. Lin, and F. J. Himpsel (2003). Phys. Rev. Lett. 90, 176805.

    Article  CAS  Google Scholar 

  13. 13.

    J. Schåfer, S. C. Erwin, M. Hansmann, Z. Song, E. Rotenberg, S. K. Devan, C. S. Heelberg, and J. Horn (2003). Phys. Rev. B. 67, 085411.

    Article  Google Scholar 

  14. 14.

    A. M. Mazzone and R. Rizzoli (2007). Model. Simul. Mater. Sci. Eng. 15, 523.

    Google Scholar 

  15. 15.

    D. J. Chadi (1987). Phys. Rev. Lett. 59, 1691.

    Article  CAS  Google Scholar 

  16. 16.

    T. W. Poon, S. Yip, P. S. Ho, and F. F. Abraham (1992). Phys. Rev. B. 65, 2161.

    Google Scholar 

  17. 17.

    A. M. Mazzone (2007). Surf. Sci. 14, 601.

    Google Scholar 

  18. 18.

    A. M. Mazzone (2005). Physica E 27, 204.

    Article  CAS  Google Scholar 

  19. 19.

    A. M. Mazzone and R. Rizzoli (2006). Modell. Simul. Mater. Sci. 14, 923.

    Article  CAS  Google Scholar 

  20. 20.

    N. D. Lang (1995). Phys. Rev. B. 52, 5335.

    Article  CAS  Google Scholar 

  21. 21.

    T. Seideman and W. H. Miller (1992). J. Chem. Phys. 96, 4412.

    Article  CAS  Google Scholar 

  22. 22.

    A. Kopf and P. Saalfrank (2004). Chem. Phys. Lett. 386, 17.

    Article  CAS  Google Scholar 

  23. 23.

    S. N. Yaliraki et al. (1997). J. Phys. Chem. 111, 6997.

    Google Scholar 

  24. 24.

    J. J. Palacios, A. J. Peres-Jimenez, E. Louis, and J. A. Verges (2001). Phys. Rev. B. 64, 115411.

    Article  Google Scholar 

  25. 25.

    J. M. Seminario, C. de la Cruz, and P. A. Derosa (2001). J. Am. Chem. Soc. 923, 5616.

    Article  Google Scholar 

  26. 26.

    M. L. Tiago and J. R. Chelikowsky (2006). Phys. Rev. B. 73, 205334.

    Article  Google Scholar 

  27. 27.

    K. Ragachavari and V. Logovinsky (1985). Phys. Rev. Lett. 55, 2853.

    Article  Google Scholar 

  28. 28.

    D. Porezag, Th. Frauenheim, Th. Köhler G. Seifert, and R. Kaschner (1995). Phys. Rev. B. 51, 12947.

    Article  CAS  Google Scholar 

  29. 29.

    J. P. Perdew, J. A. Chevary, S. A. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais (1992). Phys. Rev. B. 46, 6671.

    Article  CAS  Google Scholar 

  30. 30.

    S. H. Xu, M. Keefe, Y. Yang, C. Chen, M. Yu, G. J. Lapejere, E. Rotenberg, J. Denlinger, and J. T. Jates Jr. (2000). Phys. Rev. Lett. 84, 939.

    Article  CAS  Google Scholar 

  31. 31.

    R. Miotto, A. C. Ferraz, and G. P. Srivastava (2002). Phys. Rev. B. 65, 75401.

    Article  Google Scholar 

  32. 32.

    J. K. Cho and L. Kleinman (2004). Phys. Rev. B. 69, 75303.

    Article  Google Scholar 

  33. 33.

    J. Wang, D. A. Drabold, and A. Rockett (1995). Surf. Sci. 344, 251.

    Article  CAS  Google Scholar 

  34. 34.

    Q.-M. Zhang, C. Roland, P. Boguslawki, and J. Berhnolc (1995). Phys. Rev. Lett. 344, 251.

    Google Scholar 

  35. 35.

    A. M. Mazzone and R. Rizzoli (2007). Appl. Surf. Sci. 253, 4537.

    Google Scholar 

  36. 36.

    M. A. Reed (1999). Proceedings of the IEEE 87, 652.

    Article  CAS  Google Scholar 

  37. 37.

    J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal (2002). J. Phys. Condens. Matter. 14, 2745.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. M. Mazzone.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mazzone, A.M., Rizzoli, R. Hydrocarbon Molecules Deposited onto Silicon Surfaces: A DFT Study of Adsorption and Conductance. J Clust Sci 18, 869–881 (2007). https://doi.org/10.1007/s10876-007-0142-9

Download citation

Keywords

  • Hydrocarbon molecules
  • Silicon steps
  • DFT
  • Scattering theories