Journal of Cluster Science

, Volume 18, Issue 3, pp 697–710 | Cite as

Cation Dependent Formation of Hybrid Organic–Inorganic Frameworks Based on the Strandberg-Type Polyanion [(O2CCH2PO3)2Mo5O15]6− and Cu2+ Ions

  • Elena V. Chubarova
  • Cornelius Klöck
  • Michael H. Dickman
  • Ulrich Kortz
Article

Abstract

We present the first examples of materials based on the Strandberg type polyanion [(O2CCH2PO3)2Mo5O15]6−, linked by Cu2+ centers via coordination to the carboxylate functions of the polyanion. Simple one-pot reaction of Rb4KNa[(O2CCH2PO3)2Mo5O15]·H2O with CuCl2·2H2O in aqueous acidic media followed by crystallization resulted in the three hybrid organic–inorganic materials {K2.6Rb1.4[(PO3CH2CO2)2Mo5O15Cu(H2O)3]·7H2O}n (KRb-1), {Na2Cs3[(PO3CH2CO2)2Mo5O15(Cu(H2O)2Cl)]·6H2O}n (NaCs-2) and {Na2.75Rb1.25[(PO3CH2CO2)2Mo5O15Cu(H2O)3]·9H2O}n (NaRb-3), which were characterized by single-crystal X-ray diffraction, IR, TGA and elemental analysis. All three compounds are 1:1 polymers of the polyanion and the Cu2+ centers are all five-coordinate with two carboxylate oxygens in a trans fashion. However, the chains in KRb-1, NaCs-2 and NaRb-3 are packed differently along b leading to different solid state structures, indicating an important role of the alkali counter cations.

Keywords

polyoxomolybdates hybrid organic–inorganic materials phosphonocarboxylates crystal growth X-ray diffraction 

Supplementary material

References

  1. 1.
    (a) S. Kitagawa, R. Kitaura, and S. -i. Noro (2004). Angew Chem. Int. Ed. 43, 2334. (b) A. K. Cheetham, G. Férey, and T. Loiseau (1999). Angew Chem. Int. Ed. 38, 3268. (c) S. Kitagawa, S.-i. Noro, and T. Nakamura (2006). Chem. Commun. 701. (d) C. Janiak (2003). Dalton Trans. 2781. (e) N. R. Champness (2006). Dalton Trans. 877. (f) O. M. Yaghi, G. Li, and H. Li (1995). Nature 378, 703. (g) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. Okeeffe, and O. M. Yaghi (2001). Acc. Chem. Res. 34, 319. (h) G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, and J. D. Cashion (2002). Science 298, 1762. (i) J. Y. Lu (2003). Coord. Chem. Rev. 246, 327. (j) K. Pavani, A. Ramanan, and M. S. Whittingham (2006). J. Mol. Struct. 796, 179. (k) B. Chen, M. Eddaoudi, T. M. Reineke, J. W. Kampf, M. O’Keeffe, and O. M. Yaghi (2000). J. Am. Chem. Soc. 122, 11559. (l) O. M. Yaghi, H. Li, and T. L. Groy (1996). J. Am. Chem. Soc. 118, 9096. (m) S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams (1999). Science 283, 1148Google Scholar
  2. 2.
    (a) M. T. Pope, Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983). (b) M. T. Pope and A. Müller (1991). Angew. Chem. 103, 56 (Angew. Chem. Int. Ed. 30, 34). (c) M. T. Pope and A. Müller (eds.), Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity (Kluwer, Dordrecht, 1994). (d) C. L. Hill (ed.), Chemical Reviews, Polyoxometalates (1998). (e) M. T. Pope and A. Müller (eds.), Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications (Kluwer, Dordrecht, 2001). (f) T. Yamase and M. T. Pope (eds.), Polyoxometalate Chemistry for Nano-Composite Design (Kluwer, Dordrecht, 2002). (g) M. T. Pope (2003). Comp. Coord. Chem. II 4, 635. (h) C. L. Hill (2003). Comp. Coord. Chem. II 4, 679. (i) J. J. Borrás-Almenar, E. Coronado, A. Müller, and M. T. Pope (eds.), Polyoxometalate Molecular Science (Kluwer, Dordrecht, 2004). (j) N. Casañ-Pastor and P. Gomez-Romero (2004). Fron. Biosci. 9, 1759. (k) J. T. Rhule, C. L. Hill, D. A. Judd, and R. F. Schinazi (1998). Chem. Rev. 98, 327Google Scholar
  3. 3.
    Strandberg R. (1973). Acta Chem. Scand 27:1004CrossRefGoogle Scholar
  4. 4.
    (a) B. Hedman (1973). Acta Chem. Scand. 27, 3335. (b) W. Kwak, M. T. Pope, and T. F. Scully (1975). J. Am. Chem. Soc. 97, 5753. (c) J. K. Stalick and C. O. Quicksall (1976). Inorg. Chem. 15, 1577. (d) B. Hedman and R. Strandberg (1979). Acta Cryst. B35, 278. (e) L. Pettersson, I. Andersson, and L.-O. Öhman (1985). Acta Chem. Scand. A39, 53. (f) L. Pettersson, I. Andersson, and L.-O. Öhman (1986). Inorg. Chem. 25, 4726. (g) A. Yagasaki, I. Andersson, and L. Pettersson (1987). Inorg. Chem. 26, 3926. (h) T. Ozeki, H. Ichida, H. Miyamae, and Y. Sasaki (1988). Bull. Chem. Soc. Jpn. 61, 4455. (i) D.-G. Lyxell and R. Strandberg (1988). Acta Cryst. C44, 1535. (j) D.-G. Lyxell, R. Strandberg, D. Boström, and L. Pettersson (1991). Acta Chem. Scand. 45, 681. (k) D.-G. Lyxell, D. Boström, M. Hashimoto, and L. Pettersson (1998). Acta Chem. Scand. 52, 425Google Scholar
  5. 5.
    Kortz U., Marquer C., Thouvenot R., Nierlich M. (2003). Inorg. Chem. 42:1158CrossRefGoogle Scholar
  6. 6.
    (a) J. Lu, Y. Xu, N. K. Goh, and L. S. Chia (1998). Chem. Commun. 2733. (b) J. Weng, M. Hong, Y. Liang, Q. Shi, and R. Cao (2002). J. Chem. Soc., Dalton Trans. 289. (c) Y. Lu, Y. Li, E. Wang, J. Lu, L. Xu, and R. Clerac (2005). Eur. J. Inorg. Chem. 1239. (d) Y. Lu, J. Lu, E. Wang, Y. Guo, X. Xu, and L. Xu (2005). J. Mol. Struct. 740, 159. (e) E. Burkholder and J. Zubieta (2001). Chem. Commun. 2056Google Scholar
  7. 7.
    (a) C. R. Mayer, J. Marrot, and F. Sécheresse (2004). J. Mol. Struct. 704, 59. (b) M. Inoue and T. Yamase (1996). Bull. Chem. Soc Jap. 69, 2863. (c) M. P. Lowe, J. C. Lockhart, W. Clegg, and K. A. Fraser (1994). Angew. Chem., Int. Ed. 33, 451. (d) W. T. A. Harrison, L. L. Dussack, A. J. Jacobson (1997). Acta Crystallogr. Sect. C Cryst. Struct. Commun. 53, 856. (e) M. P. Lowe, J. C. Lockhart, G. A. Forsyth, W. Clegg, and K. A. Fraser (1995). J. Chem. Soc., Dalton Trans. 145Google Scholar
  8. 8.
    Burkholder E., Golub V., O’Connor C. J., Zubieta J. (2003). Inorg. Chem. 42:6729CrossRefGoogle Scholar
  9. 9.
    (a) R. C. Finn, R. S. Rarig Junior, and J. Zubieta (2002). Inorg. Chem. 41, 2109. (b) H. -S. Zhang, R. -B. Fu, J. -J. Zhang, X. -T. Wu, Y. -M. Li, L. -S. Wang, X. -H. Huang (2005). J. Solid State Chem. 178, 1349. (c) E. Burkholder and J. Zubieta (2004). Inorg. Chim. Acta 357, 1229. (d) R. C. Finn, E. Burkholder, and J. Zubieta (2001). Chem. Commun. 1852. (e) E. Burkholder, V. Golub, C. J. O’Connor, and J. Zubieta (2004). Inorg. Chem. 43, 7014. (f) R. C. Finn and J. Zubieta (2001). Inorg. Chem. 40, 2466. (g) R. -B. Fu, X. -T. Wu, S. -M. Hu, J. -J. Zhang, Z. -Y. Fu, W. -X. Du, S. -Q. Xia (2003). Eur. J. Inorg. Chem. 1798. (h) E. Burkholder, V. Golub, C. J. O’Connor, and J. Zubieta (2003). Chem. Commun. 2128Google Scholar
  10. 10.
    Sheldrick G. M. (1996). SADABS. University of Göttingen, GermanyGoogle Scholar
  11. 11.
    G. M. Sheldrick, SHELXS-97, Program for solution of crystal structures (University of Göttingen, Germany, 1997); G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures (University of Göttingen, Germany, 1997).Google Scholar
  12. 12.
    Flack H. D. (1983). Acta Cryst. A39:876–881Google Scholar
  13. 13.
    Kortz et al., manuscript in preparationGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Elena V. Chubarova
    • 1
  • Cornelius Klöck
    • 1
  • Michael H. Dickman
    • 1
  • Ulrich Kortz
    • 1
  1. 1.School of Engineering and ScienceJacobs University BremenBremenGermany

Personalised recommendations