Skip to main content
Log in

Density Functional Studies of Diatomic LaO to LuO

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies and dipole moments of the title molecules in neutral, positively and negatively charged ions were studied by use of density functional method. Ground electronic state was assigned for each molecule. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the metal s, d and f orbitals and oxygen p orbitals. Contrary to the well known lanthanide contraction, the bond distance is not regular from LaO to LuO for both neutral and charged molecules. An obvious population at 5d orbital was observed through the lanthanide series. 4f electrons also participate the chemical bonding for CeO to NdO and TbO to TmO. For EuO, GdO, YbO and LuO, 4f electrons tend to be localized. The spin multiplicity is regular for neutral and charged molecules. The spin multiplicity of the charged molecules can be obtained by −1 (or +1 for TbO+, DyO+, YbO and YbO+) compared with the corresponding neutral molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Willson S. P., Andrews L. (1999) J. Phys. Chem. A 103:3171

    Article  CAS  Google Scholar 

  2. Willson S. P., Andrews L. (1999) J. Phys. Chem. A 103:6972

    Article  CAS  Google Scholar 

  3. Knight L. B. Jr., Kaup J. G., Petzoldt B., Ayyad R., Ghanty T. K., Davidson E. R. (1999) J. Chem. Phys. 110:5658

    Article  CAS  Google Scholar 

  4. Steimle T. C., Virgo W. (2002) . J. Chem. Phys. 116:6012

    Article  CAS  Google Scholar 

  5. Suenram R. D., Lovas F. J., Fraser G. T., Matsumura K. (1990) J. Chem. Phys. 92:4724

    Article  CAS  Google Scholar 

  6. Schamps J., Bencheikh M., Barthelat J.-C., Field R.W. (1995) J. Chem. Phys. 103:8004

    Article  CAS  Google Scholar 

  7. Dolg M., Stoll H. (1989) Theor. Chim. Acta 75:369

    Article  CAS  Google Scholar 

  8. Wang S. G., Schwarz W. H. E. (1995) J. Phys. Chem. 99:11687

    Article  CAS  Google Scholar 

  9. Wang S. G., Pan D. K., Schwarz W. H. E. (1995) J. Chem. Phys.102:9296

    Article  CAS  Google Scholar 

  10. Kotzian M., Rösch N., Zerner M. C. (1992) Theor. Chim. Acta 81:201

    Article  CAS  Google Scholar 

  11. Cao X. Y., Dolg M. (2001) J. Chem. Phys. 115:7348

    Article  CAS  Google Scholar 

  12. Cao X. Y., Dolg M. (2002) J. Mol. Struct. – Theochem 581:139

    Article  CAS  Google Scholar 

  13. Dolg M., Stoll H., Preuss H. (1989) J. Chem. Phys. 90:1730

    Article  CAS  Google Scholar 

  14. Sekiya M., Noro T., Miyoshi E., Osanai Y., Koga T. (2006) . J. Comput. Chem. 27, 463, and references therein

  15. Kaledin L. A., McCord J. E., Heaven M. C. (1995) J. Mol. Spectrosc. 170:166

    Article  CAS  Google Scholar 

  16. Dulick M., Field R. W. (1985) J. Mol. Spectrosc. 113:105

    Article  CAS  Google Scholar 

  17. Childs W. J., Azuma Y., Goodman G. L. (1990) J. Mol. Spectrosc. 144:70

    Article  CAS  Google Scholar 

  18. Kotzian M., Rösch N. (1991) J. Mol. Spectrosc. 147:346

    Article  CAS  Google Scholar 

  19. Shenyavskaya E. A., Bernard A., Vergès J. (2003) J. Mol. Spectrosc. 222:240

    Article  CAS  Google Scholar 

  20. Linton C., Effantin C., Crozet P., Ross A. J., Shenyavskaya E. A., d’Incan J. (2004) J. Mol. Spectrosc. 225:132

    Article  CAS  Google Scholar 

  21. Effantin C., Bernard A., Crozet P., Ross A.J., d’Incan J. (2005) J. Mol. Spectrosc. 231:154

    Article  CAS  Google Scholar 

  22. Linton C., James A. M., Simard B. (1993) J. Chem. Phys. 99:9420

    Article  CAS  Google Scholar 

  23. Linton C., Bujin G., Rana R. S., Gray J. A. (1987) J. Mol. Spectrosc. 126:370

    Article  CAS  Google Scholar 

  24. Liu W., Hong G., Dai D., Li L., Dolg M. (1997) Theor. Chem. Acc. 96:75

    CAS  Google Scholar 

  25. Klingeler R., Pontius N., Lüttgens G., Bechthold P.S., Neeb M., Eberhardt W. (2002) Phys. Rev. A 65:032502

    Article  Google Scholar 

  26. Dolg M., Liu W., Kalvoda S. (2000) Inter. J. Quantum Chem. 76:359

    Article  CAS  Google Scholar 

  27. Sakai Y., Nakai T., Mogi K., Miyoshi E. (2003) Mol. Phys. 101:117

    Article  CAS  Google Scholar 

  28. Kaledin L. A., Shenyavskaya E. A. (1981) J. Mol. Spectrosc. 90:590

    Article  CAS  Google Scholar 

  29. Kaledin L. A., Shenyavskaya E. A. (1989) J. Mol. Spectrosc. 133:469

    Article  CAS  Google Scholar 

  30. Linton C., Simard B. (1992) J. Chem. Phys. 96:1698

    Article  CAS  Google Scholar 

  31. Chen J., Steimle T. C., Linton C. (2005) J. Mol. Sectrosc. 232:105

    Article  CAS  Google Scholar 

  32. Liu Y. C., Linton C. (1984) J. Mol. Spectrosc. 104:72

    Article  CAS  Google Scholar 

  33. Steimle T. C., Goodridge D. M., Linton C. (1997) J. Chem. Phys. 107:3723

    Article  CAS  Google Scholar 

  34. Melville T. C., Gordon I., Tereszchuk K. A., Coxon J. A., Bernath P. F. (2003) J. Mol. Spectrosc. 218:235

    Article  CAS  Google Scholar 

  35. Brutti S., Terai T., Yamawaki M., Yasumoto M., Balducci G., Gigli G., Ciccioli A. (2005) Rapid Commun. Mass Spectrom. 19:2251

    Article  CAS  Google Scholar 

  36. McDonald S. A., Rice S. F., Field R. W., Linton C. (1990) J. Chem. Phys. 93:7676

    Article  CAS  Google Scholar 

  37. Liu W., Dolg M., Li L. (1998) J. Chem. Phys. 108:2886

    Article  CAS  Google Scholar 

  38. Dolg M., Stoll H., Flad H.–J., Preuss H. (1992) J. Chem. Phys. 97:1162

    Article  CAS  Google Scholar 

  39. Frisch M. J., Trucks G. W., Schlegel H. B. et al. (2003) Gaussian03. Gaussian Inc.: Pittsburgh PA,

    Google Scholar 

  40. Becke A. D. (1993) J. Chem. Phys. 98:5648

    Article  CAS  Google Scholar 

  41. Lee C., Yang W., Parr R. G. (1988) Phys. Rev. B 37:785

    Article  CAS  Google Scholar 

  42. Dolg M., Stoll H., Savin A., Preuss H. (1989) Theor. Chim.Acta 75:173

    Article  CAS  Google Scholar 

  43. Huber K. P., Herzberg G. (1979) Molecular Spectra and Molecular Structure, Vol IV, Constants of Diatomic Molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  44. In the vibrational frequency calculation, the atomic mass of Pm is chosen 144.9128, because in Gaussian Package, the default mass of Pm was not chosen and this causes the failure of PmO frequency calculation. The mass used came from a web based source where it was attributed to Audi et al. "AME 2003 Atomic Mass Evaluation" Nuclear Physics A729(2003). It should be verified before being relied upon. It is the mass of the most abundant isotope. We are grateful to Dr. Laurence Cuffe of Gaussian Company for the help in the vibrational frequency calculation of PmO

  45. Dulick M., Murad E., Barrow R. F. (1986) J. Chem. Phys. 85:385

    Article  CAS  Google Scholar 

  46. Dolg M., Stoll H. (1995) In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K.A.; Eyring, L., eds.; Elsevier/North-Holland; Amsterdam, Vol. 20

Download references

Acknowledgements

The authors thank National Natural Science Foundation of China (NSFC) for financial support (Grant Nos. 20331030, 20571073, 20573016 and 20373009). We are also thankful for the help of Dr. Laurence Cuffe of Gaussian Company in the calculation of vibrational frequency of PmO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. J. Wu or Z. M. Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z.J., Guan, W., Meng, J. et al. Density Functional Studies of Diatomic LaO to LuO. J Clust Sci 18, 444–458 (2007). https://doi.org/10.1007/s10876-007-0108-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-007-0108-y

Keywords

Navigation